Microplastics as potential vectors for selected organic chemical pollutants in river ecosystems
- Authors: Tumwesigye, Edgar
- Date: 2024-10-11
- Subjects: Microplastics Environmental aspects , Vector , Adsorption (Biology) , Watersheds , Kinetics
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/466677 , vital:76766 , DOI https://doi.org/10.21504/10962/466677
- Description: Microplastics (MPs) as pollutants in river ecosystems have received considerable research attention in recent years. However, in Africa, research on MPs is sparse, and more needs to be done. Empirical evidence suggests that MP can act as vectors of organic chemical pollutants due to their diverse functional groups and other physical-chemical properties, such as their small sizes, crystal structure and porosity. MPs acting as vectors of chemical pollutants, adds to the complexity of understanding the risk posed to both the ecosystem and human health. Regarding the so-called vector effect, the role of seasonality, land use type, adsorption kinetics, and MP properties has yet to receive the necessary research in the literature, especially concerning pharmaceutical active compounds and other organic pollutants in river systems. This is particularly true for Africa, including South Africa. This study, therefore, aimed to fill these existing research gaps. Overall, the study aimed to investigate the potential of selected microplastic polymers of a particular size range as vectors of organic pollutants in urban rivers within the Eastern Cape of South Africa. To achieve this aim, the study explored the influence of spatial-temporal variability, MPs particle sizes, and various physicochemical variables on the adsorption of antibiotics: Sulfamethoxazole, ciprofloxacin, and endocrine disruptors: 17β-Estradiol, 4-(2, 6-dimethyl-2-heptyl) phenol. The adsorption kinetics mechanism was also investigated and established. Polyethylene Terephthalate (PET) and polypropylene (PP) MPs were seasonally deployed once in the summer and autumn seasons, i.e. 20th January 2022 in Bloukrans River and 21st January 2022 in Swartkops River for the summer season and 7th April 2022 in Bloukrans River and 8th April 2022 in Swartkops River for the autumn season. Deployed MPs were of two size ranges, type 1 (2 mm<-≤5 mm) and type 2 (0.5mm<-≤2 mm). The sites where the MPs were deployed had different land use practices: informal settlements, discharge points of wastewater treatment works (WWTWs), agricultural farms, and control sites, considered as the least impacted sites. This was done to analyse land use types' role in the adsorption of chemical pollutants onto MPs. MPs were retrieved in periodic intervals of 7 days, 14 days and 35days calculated based on the day of deployment for both summer and autumn seasons and analysed for Sulfamethoxazole, Ciprofloxacin, 17β-Estradiol, 4-(2, 6-dimethyl-2-heptyl) phenol using high-resolution liquid chromatography–mass spectrometry LC-MS/MS equipped with a triple quadrupole (QqQ) analyser. Concurrent with MP retrieval water physicochemical variables: pH, dissolved oxygen (DO), temperature, turbidity, electrical conductivity (EC), total suspended solids (TSS), total dissolved solids, total alkalinity and total hardness. The adsorption kinetics mechanism was studied in the laboratory between PET and PP of two size ranges and Sulfamethoxazole, Ciprofloxacin, and 17β-Estradiol model chemical. The results indicate that land use practices significantly impacted the concentration of the adsorbed chemicals on MPs. Sites downstream of the WWTW had higher concentrations of Sulfamethoxazole: 11119.6001±12552.4120ngL-1 and ciprofloxacin: 30285.19± 28783.7821ngL-1 adsorbed onto MPs in the Bloukrans River compared to the concentration of same compounds from other land use types along the same River catchment. Agriculturally impacted sites had higher concentrations of 17β-Estradiol on MPs; 11624.5611 ± 15382.2923ngL-1 and 100.3635± 29.6321ngL-1 in Swartkops and Bloukrans Rivers respectively compared to other sites. These results suggest that land use is an essential factor influencing chemical inputs into rivers and their adsorption onto MPs. Adsorption was higher for the MP of smaller sizes compared to MPs with bigger sizes, indicating that size is an essential factor that influences the vector effects of MPs. Adsorption was significantly higher after 35 days than all other days during the two seasons (P< 0.05). The adoption kinetics data fitted well with the pseudo-second-order model (R2> 0.99), indicating that chemisorption mechanisms may be the rate-limiting step. Data did not fit the intraparticle diffusion model. Both film diffusion and intraparticle diffusion possibly influenced the rate-limiting adsorption step simultaneously. Regarding the relationship between adsorption and water physico-chemical variables, of special interest a positive correlation between total alkalinity, electrical conductivity, total hardness, and total suspended salts (TDS) and the concentration of the adsorbed chemicals was observed. While the relationship between adsorption and dissolved oxygen was negative. The physicochemical variables with a positive relationship with adsorption are indicative of pollution. Therefore, the result suggests that increasing pollution tends to favour higher adsorption. The results in this study highlight the insights on i) the influence of land use on adsorption, ii) the role of exposure duration on adsorption, iii) the influence of seasonality and MP sizes on adsorption iv) relationship between water physicochemical parameters and adsorption as well as v) establishing adsorption kinetic mechanism. These findings are critical to better understanding the so-called vector effects of MPs and the management associated with MPs in river systems and form essential data sets needed in developing effective pollution mitigation strategies that are region-specific. , Thesis (PhD) -- Faculty of Science, Institute for Water Research, 2024
- Full Text:
- Date Issued: 2024-10-11
The assessment of degradation state in Ecological Infrastructure and prioritisation for rehabilitation and drought mitigation in the Tsitsa River Catchment
- Authors: Mahlaba, Bawinile
- Date: 2022-04-06
- Subjects: Environmental degradation South Africa Eastern Cape , Restoration ecology South Africa Eastern Cape , Climate change mitigation South Africa Eastern Cape , Droughts South Africa Eastern Cape , South African National Biodiversity Institute , Sustainable development South Africa Eastern Cape , Watersheds , Ecological Infrastructure (EI) , Tsitsa River Catchment
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/202138 , vital:46470
- Description: Ecosystem degradation is a serious concern globally, including in South Africa, because of the potential adverse impacts on food security, livelihoods, climate change, biodiversity, and ecosystem services. Ecosystem degradation can result in flow alteration in the landscape through changes in the hydrological regime. The study adopts the South African National Biodiversity Institute (SANBI) Framework of Investing in Ecological Infrastructure (EI) to prioritise the restoration of degraded ecosystems and maintain ecosystem structures and functions. This study aims to assess how EI (specifically wetlands, grassland, abandoned cultivated fields, and riparian zone) can facilitate drought mitigation: to assess land degradation status and identify priority EI areas that can be restored to improve the drought mitigation capacity. Two assessment methods were used in this study. Firstly, the Trends.Earth tool was used to assess degradation and land cover change from the year 2000-2015 in Tsitsa catchment, through assessment of Sustainable Development Goal degradation indicator (SDG15.3.1) at a resolution of 300 m. The degradation indicator uses information from three sub-indicators: Productivity, Landcover and Soil Organic Carbon to compute degraded areas. The degraded areas need to be restored and rehabilitated to maintain the flow of essential ecosystems services provided by EI. The second assessment used the Analytical Hierarchy Process (AHP), which integrates stakeholder inputs into a multi-criteria decision analysis (MCDA). The AHP is a useful decision support system that considers a range of quantitative and qualitative alternatives in making a final decision to solve complex problems. As part of the AHP analysis, participatory mapping using Participatory Geographic Information System was conducted to obtain stakeholder inputs for prioritising restoration of the key EI categories (wetlands, grassland, abandoned cultivated fields, and riparian zone) in the catchment. During the participatory mapping, communities prioritised the key EI based on three criteria: (1) ecosystem health, (2) water provisioning and (3) social benefits. The AHP method was used in ArcGIS to prioritise suitable key EI restoration areas with high potential to increase water recharge and storage, contribute to drought mitigation and ecosystem services for the catchment. The prioritisation of EI for community livelihoods in the AHP analysis included all three main criteria. In comparison, the prioritisation of suitable key EI restoration areas for flow regulations was based on two criteria: ecosystem health and water provisioning. The land degradation indicator showed that approximately 54% of the catchment is stable, 41% is degraded land, and 5% of the area has improved over the assessment period (15 years). The degradation status in the EI suggests that more than half (>50%) of each EI category is stable, but there are areas showing signs of degradation, including 43% of grasslands degraded and 39% of wetlands, cultivated lands, and riparian zones also degraded. Degradation is dominant in the upper (T35B and T3C) and lower (T35K, T35L and T35M) parts of the catchments. The three criteria used by the stakeholders in the prioritisation process of the key EI were assigned 12 spatial attributes (the catchment characteristics about the study area in relation to the criteria) to indicate relevant information needed for selecting suitable restoration areas to enhance flow regulation. The AHP analysis results identified approximately 63% (17,703 ha) of wetlands, 88% (235,829 ha) of grasslands, 78% (13,608 ha) of abandoned cultivated fields and 93% (3,791 ha) of the riparian zones as suitable areas for restoration to mitigate drought impact through flow regulation. Also, the suitability results showed 63% (17,703 ha) of wetlands, 58% (2,203 ha) of riparian zones, 68% (11,745 ha) of abandoned cultivated fields and 46% (122,285 ha) of grasslands as suitable restoration areas for improving ecosystem services for community livelihoods. The AHP analysis identified more than 39-43% (of the degraded EI indicated by the Trends.Earth analysis) areas that are suitable for restoration, because key EI plays a significant role in flow regulation and people’s livelihoods, especially when they are managed, maintained, and restored to good health conditions. Therefore, the prioritized EI areas should be either maintained, managed, rehabilitated or restored. The major distinct causes of land degradation are woody encroachment in grasslands, invasion of alien plants on abandoned cultivated fields and soil erosion in the catchment. The most suitable EI areas recommended for restoration are those natural resources near local communities, which provide essential ecosystem services to sustain their livelihood. Therefore, degraded EI in the T35 catchments should be restored and maintained to improve livelihood and mitigate drought impacts. The study pointed out how the key selected ecological infrastructure can help mitigate the impacts of droughts and improve human livelihood. The study contributes towards the important concept of investing in ecological infrastructure to improve the social, environmental, and economic benefits. , Thesis (MSc) -- Faculty of Science, Institute for Water Research, 2022
- Full Text:
- Date Issued: 2022-04-06