Using the larval parasitoid, Agathis bishopi (Nixon) (Hymenoptera: Braconidae), for early detection of false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) infested fruit
- Authors: Zimba, Kennedy Josaya
- Date: 2015
- Subjects: Cryptophlebia leucotreta , Citrus -- Diseases and pests -- South Africa , Pests -- Biological control -- South Africa , Cryptophlebia leucotreta -- Detection , Parasitoids -- Hosts , Braconidae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5919 , http://hdl.handle.net/10962/d1017186
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is one of the major citrus pests of economic importance for South Africa’s citrus industry. It is endemic to Africa, and therefore a phytosanitary pest with zero tolerance by most export markets. The cryptic nature of T. leucotreta makes visual inspection an inefficient method for detecting neonate larvae in fruit in the packhouse. Therefore, a more accurate method for sorting infested fruit at the packhouse, particularly for newly infested fruit could ensure market access. A recent study showed that fruit infested by T. leucotreta emit a chemical profile different from that of a healthy fruit. Several studies provide evidence that parasitoids locate their hosts feeding on fruit by exploiting the novel chemical profiles produced due to host herbivory. The aim of this study was to evaluate the potential of using the naturally occurring behaviour of a larval parasitoid Agathis bishopi (Nixon) (Hymenoptera: Braconidae) for detection of T. leucotreta infested fruit, by determining which compound in infested fruit is attractive to parasitoids. Ytube olfactometer and flight-tunnel bioassays with healthy and T. leucotreta infested fruit showed a significantly stronger response of A. bishopi female parasitoids to infested fruit. Among the volatile compounds associated with T. leucotreta infested fruit, D-limonene elicited the strongest attraction to A. bishopi female parasitoids. Attraction of mated A. bishopi female parasitoids to T. leucotreta infested fruit and D-limonene significantly increased after oviposition experience. Behavioural responses of A. bishopi female parasitoids that were associated with T. leucotreta infested fruit were investigated to determine which behaviours are distinct and interpretable. Probing and oviposition behaviours were the most noticeable and were only elicited on infested fruit when parasitoids contacted T. leucotreta frass, indicating that chemical compounds in frass are short-range cues used for final host location. Since production of D-limonene by fruit is elevated due to herbivory by different pests including mechanical injury on fruit, response of A. bishopi female parasitoids to compounds in frass offers a more specific and potentially useful mechanism for development of a detection system for T. leucotreta infested fruit. Chemical analysis of T. leucotreta frass and conditioning A. bishopi parasitoids to respond behaviourally to compounds in frass is proposed.
- Full Text:
- Date Issued: 2015
- Authors: Zimba, Kennedy Josaya
- Date: 2015
- Subjects: Cryptophlebia leucotreta , Citrus -- Diseases and pests -- South Africa , Pests -- Biological control -- South Africa , Cryptophlebia leucotreta -- Detection , Parasitoids -- Hosts , Braconidae
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5919 , http://hdl.handle.net/10962/d1017186
- Description: Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) is one of the major citrus pests of economic importance for South Africa’s citrus industry. It is endemic to Africa, and therefore a phytosanitary pest with zero tolerance by most export markets. The cryptic nature of T. leucotreta makes visual inspection an inefficient method for detecting neonate larvae in fruit in the packhouse. Therefore, a more accurate method for sorting infested fruit at the packhouse, particularly for newly infested fruit could ensure market access. A recent study showed that fruit infested by T. leucotreta emit a chemical profile different from that of a healthy fruit. Several studies provide evidence that parasitoids locate their hosts feeding on fruit by exploiting the novel chemical profiles produced due to host herbivory. The aim of this study was to evaluate the potential of using the naturally occurring behaviour of a larval parasitoid Agathis bishopi (Nixon) (Hymenoptera: Braconidae) for detection of T. leucotreta infested fruit, by determining which compound in infested fruit is attractive to parasitoids. Ytube olfactometer and flight-tunnel bioassays with healthy and T. leucotreta infested fruit showed a significantly stronger response of A. bishopi female parasitoids to infested fruit. Among the volatile compounds associated with T. leucotreta infested fruit, D-limonene elicited the strongest attraction to A. bishopi female parasitoids. Attraction of mated A. bishopi female parasitoids to T. leucotreta infested fruit and D-limonene significantly increased after oviposition experience. Behavioural responses of A. bishopi female parasitoids that were associated with T. leucotreta infested fruit were investigated to determine which behaviours are distinct and interpretable. Probing and oviposition behaviours were the most noticeable and were only elicited on infested fruit when parasitoids contacted T. leucotreta frass, indicating that chemical compounds in frass are short-range cues used for final host location. Since production of D-limonene by fruit is elevated due to herbivory by different pests including mechanical injury on fruit, response of A. bishopi female parasitoids to compounds in frass offers a more specific and potentially useful mechanism for development of a detection system for T. leucotreta infested fruit. Chemical analysis of T. leucotreta frass and conditioning A. bishopi parasitoids to respond behaviourally to compounds in frass is proposed.
- Full Text:
- Date Issued: 2015
Development of biological control strategies against sirex noctilio (Fabricius) on Sappi Forests (Ltd) Landholdings in the summer rainfall regions of South Africa
- Authors: Verleur, Peter Marcel
- Date: 2009
- Subjects: Pests -- Biological control -- South Africa , Nonindigenous pests -- Control
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:10741 , http://hdl.handle.net/10948/1273 , Pests -- Biological control -- South Africa , Nonindigenous pests -- Control
- Description: The commercial forest industry in South Africa is predominantly dependent on large tracts of exotic monoculture plantations. While this simplifies management practice, there is always the inherent danger posed by introduced pests and diseases. Classical biological control is usually the most effective control method against introduced exotic pests. Climatic factors and seasonal differences may negatively affect the ability of the natural enemies to establish successfully at the new location. Successful establishment of the natural enemies usually results in control over the pest within four years. Sirex noctilio naturally occurs in the mediterranean countries of Europe and North Africa. It is the only member of the Siricid family capable of killing living pine trees. Sirex noctilio was accidentally introduced into New Zealand from Europe during the early 1900s. It has since been found in Australia, Brazil, Argentina South Africa and Chile. Initial biological control in New Zealand and Tasmania was through the release of Siricid specific parasitoid wasps from Europe and North America. The discovery of the accidental introduction of the entomophagous nematode Beddingia siricidicola and its subsequent artificial culturing for release provided the platform for the biological control methodology, which brought the Sirex woodwasp under control. The methods and natural enemies used in New Zealand and Australia were introduced by the South American countries and in the Western Cape of South Africa. Successful biological control was achieved in the Western Cape within two years after the initial introduction of the nematode B. siricidicola. The migration of S. noctilio into the summer rainfall regions of South Africa occurred in the absence of the associated natural enemies. This resulted in rapid population growth of the pest and substantial damage was caused to plantations of Pinus patula in the Eastern Cape and KwaZulu-Natal. Initial attempts at introducing B. siricidicola during 2004 were not very successful. This study contributes to the understanding and adaptation of the biological control methods to the summer rainfall climate. The key finding was that in the summer rainfall climate, only the bottom third of nematode inoculated S. noctilio infested trees produced parasitized adults during the emergence period. A comparative study was done on log samples from S. noctilio infested trees collected in the Western Cape and KwaZulu-Natal. iv An adapted nematode inoculation technique for pulpwood plantations in the summer rainfall regions was developed and implemented in mass inoculations with B. siricidicola during 2007 and 2008. Locally available herbicides were tested for suitability of use in the establishment of trap trees, which would attract ovipositing S. noctilio females in situations where low numbers of the woodwasp occur. Determination of the levels of natural B. siricidicola parasitism in S. noctilio adults during the 2008 emergence period indicate successful establishment of the nematode in KwaZulu-Natal. Successful introduction of the parasitoid wasp Ibalia leucospoides into the summer rainfall regions has also been achieved.
- Full Text:
- Date Issued: 2009
- Authors: Verleur, Peter Marcel
- Date: 2009
- Subjects: Pests -- Biological control -- South Africa , Nonindigenous pests -- Control
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:10741 , http://hdl.handle.net/10948/1273 , Pests -- Biological control -- South Africa , Nonindigenous pests -- Control
- Description: The commercial forest industry in South Africa is predominantly dependent on large tracts of exotic monoculture plantations. While this simplifies management practice, there is always the inherent danger posed by introduced pests and diseases. Classical biological control is usually the most effective control method against introduced exotic pests. Climatic factors and seasonal differences may negatively affect the ability of the natural enemies to establish successfully at the new location. Successful establishment of the natural enemies usually results in control over the pest within four years. Sirex noctilio naturally occurs in the mediterranean countries of Europe and North Africa. It is the only member of the Siricid family capable of killing living pine trees. Sirex noctilio was accidentally introduced into New Zealand from Europe during the early 1900s. It has since been found in Australia, Brazil, Argentina South Africa and Chile. Initial biological control in New Zealand and Tasmania was through the release of Siricid specific parasitoid wasps from Europe and North America. The discovery of the accidental introduction of the entomophagous nematode Beddingia siricidicola and its subsequent artificial culturing for release provided the platform for the biological control methodology, which brought the Sirex woodwasp under control. The methods and natural enemies used in New Zealand and Australia were introduced by the South American countries and in the Western Cape of South Africa. Successful biological control was achieved in the Western Cape within two years after the initial introduction of the nematode B. siricidicola. The migration of S. noctilio into the summer rainfall regions of South Africa occurred in the absence of the associated natural enemies. This resulted in rapid population growth of the pest and substantial damage was caused to plantations of Pinus patula in the Eastern Cape and KwaZulu-Natal. Initial attempts at introducing B. siricidicola during 2004 were not very successful. This study contributes to the understanding and adaptation of the biological control methods to the summer rainfall climate. The key finding was that in the summer rainfall climate, only the bottom third of nematode inoculated S. noctilio infested trees produced parasitized adults during the emergence period. A comparative study was done on log samples from S. noctilio infested trees collected in the Western Cape and KwaZulu-Natal. iv An adapted nematode inoculation technique for pulpwood plantations in the summer rainfall regions was developed and implemented in mass inoculations with B. siricidicola during 2007 and 2008. Locally available herbicides were tested for suitability of use in the establishment of trap trees, which would attract ovipositing S. noctilio females in situations where low numbers of the woodwasp occur. Determination of the levels of natural B. siricidicola parasitism in S. noctilio adults during the 2008 emergence period indicate successful establishment of the nematode in KwaZulu-Natal. Successful introduction of the parasitoid wasp Ibalia leucospoides into the summer rainfall regions has also been achieved.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »