Phthalocyanine-nanoparticle conjugates supported on inorganic nanofibers as photocatalysts for the treatment of biological and organic pollutants as well as for hydrogen generation
- Authors: Mapukata, Sivuyisiwe
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanofibers , Nanoparticles , Zinc , Hydrogen , Organic water pollutants , Water Purification , Electrospinning , Photocatalysis , Photodegradation , Anti-infective agents
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192831 , vital:45268 , 10.21504/10962/192831
- Description: This thesis reports on the synthesis, photophysicochemical and photocatalytic properties of various zinc phthalocyanines (Pcs). For enhanced properties and catalyst support, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. For increased catalyst surface area and catalyst reusability, the Pcs and some of their conjugates were also supported on electrospun inorganic nanofibers i.e. SiO2, hematite (abbreviated Hem and has formula α-Fe2O3), ZnO and TiO2 nanofibers. The effect that the number of charges on a Pc has on its antimicrobial activities was evaluated by comparing the photoactivities of neutral, octacationic and hexadecacationic Pcs against S. aureus, E. coli and C. albicans. The extent of enhancement of their antimicrobial activities upon conjugation (through chemisorption) to Ag NPs was also studied in solution and when supported on SiO2 nanofibers. The results showed that the hexadecacationic complex 3 possessed the best antimicrobial activity against all three microorganisms, in solution and when supported on the SiO2 nanofibers. Covalent conjugation of Pcs with carboxylic acid moieties (complexes 4-6) to amine functionalised NPs (Cys-Ag, NH2-Fe3O4 and Cys-Fe3O4@Ag) resulted in enhanced singlet oxygen generation and thus antibacterial efficiencies. Comparison of the photodegradation efficiencies of semiconductor nanofibers (hematite, ZnO and TiO2) when bare and when modified with a Pc (complex 6) were evaluated. Modification of the nanofibers with the Pc resulted in enhanced photoactivities for the nanofibers with the hematite nanofibers being the best. Modification of the hematite nanofibers with two different Pcs i.e. monosubstituted (complex 5) and an asymmetrical tetrasubstituted Pc (complex 6) showed that complex 6 better enhanced the activity of the nanofibers. Evaluation of the hydrogen generation efficiencies of the bare and modified TiO2 nanofibers calcined at different temperatures demonstrated that the anatase nanofibers calcined at 500 oC possessed the best catalytic efficiency. The efficiency of the TiO2 nanofibers was enhanced in the presence of the Co and Pd NPs as well as a Pc (complex 7), with the extent of enhancement being the greatest for the nanofibers modified with the Pd NPs. The reported findings therefore demonstrate the versatility of applications of Pcs for different water purification techniques when supported on different nanomaterials. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
- Authors: Mapukata, Sivuyisiwe
- Date: 2021-10-29
- Subjects: Phthalocyanines , Nanofibers , Nanoparticles , Zinc , Hydrogen , Organic water pollutants , Water Purification , Electrospinning , Photocatalysis , Photodegradation , Anti-infective agents
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/192831 , vital:45268 , 10.21504/10962/192831
- Description: This thesis reports on the synthesis, photophysicochemical and photocatalytic properties of various zinc phthalocyanines (Pcs). For enhanced properties and catalyst support, the reported Pcs were conjugated to different nanoparticles (NPs) through chemisorption as well as amide bond formation to yield Pc-NP conjugates. For increased catalyst surface area and catalyst reusability, the Pcs and some of their conjugates were also supported on electrospun inorganic nanofibers i.e. SiO2, hematite (abbreviated Hem and has formula α-Fe2O3), ZnO and TiO2 nanofibers. The effect that the number of charges on a Pc has on its antimicrobial activities was evaluated by comparing the photoactivities of neutral, octacationic and hexadecacationic Pcs against S. aureus, E. coli and C. albicans. The extent of enhancement of their antimicrobial activities upon conjugation (through chemisorption) to Ag NPs was also studied in solution and when supported on SiO2 nanofibers. The results showed that the hexadecacationic complex 3 possessed the best antimicrobial activity against all three microorganisms, in solution and when supported on the SiO2 nanofibers. Covalent conjugation of Pcs with carboxylic acid moieties (complexes 4-6) to amine functionalised NPs (Cys-Ag, NH2-Fe3O4 and Cys-Fe3O4@Ag) resulted in enhanced singlet oxygen generation and thus antibacterial efficiencies. Comparison of the photodegradation efficiencies of semiconductor nanofibers (hematite, ZnO and TiO2) when bare and when modified with a Pc (complex 6) were evaluated. Modification of the nanofibers with the Pc resulted in enhanced photoactivities for the nanofibers with the hematite nanofibers being the best. Modification of the hematite nanofibers with two different Pcs i.e. monosubstituted (complex 5) and an asymmetrical tetrasubstituted Pc (complex 6) showed that complex 6 better enhanced the activity of the nanofibers. Evaluation of the hydrogen generation efficiencies of the bare and modified TiO2 nanofibers calcined at different temperatures demonstrated that the anatase nanofibers calcined at 500 oC possessed the best catalytic efficiency. The efficiency of the TiO2 nanofibers was enhanced in the presence of the Co and Pd NPs as well as a Pc (complex 7), with the extent of enhancement being the greatest for the nanofibers modified with the Pd NPs. The reported findings therefore demonstrate the versatility of applications of Pcs for different water purification techniques when supported on different nanomaterials. , Thesis (PhD) -- Faculty of Science, Chemistry, 2021
- Full Text:
- Date Issued: 2021-10-29
Photocatalysis of 4-chloro and 4-nonylphenols using novel symmetric phthalocyanines and asymmetric porphyrin supported on polyacrylonitrite nanofibres
- Authors: Jones, Benjamin Martin
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Electrospinning , Porphyrins , Nanofibers , Photocatalysis , Photocatalysis -- Environmental aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164770 , vital:41163
- Description: This work explores the synthesis and characterisation of novel symmetrical phthalocyanines and novel asymmetric porphyrins that have been embedded or linked respectively,and electrospun into fibres for application in the photocatalysis of environmental pollutants. The phthalocyanines contain pyrrole moieties without hetero atom linkers to maintain a rigid structure. The porphyrin contains a carboxy moiety utilized to construct an amide bond between the complex and the polymer prior to the spinning process. The new compounds were characterized by elemental analyses, proton nuclear magnetic resonance (HNMR)Fourier-transform infrared spectroscopy (FTIR), MALDI-TOF and UV-vis spectroscopy. The general trends of fluorescence, triplet and singlet oxygen quantum yields are described as well as their appropriate lifetimes. The photocatalytic activity of phthalocyanine embedded fibres were compared against those that had been dyed. Unfortunately, during the degradation process, the dyed fibres leeched compound and the studies could not be continued. It was seen that the porphyrin fibres linked to the polymer showed the most efficient photocatalytic activity against 4-cholorphenol and 4-nonylphenol due to irradiation at lower wavelengths consequently having higher frequencies and transferring more energy.
- Full Text:
- Date Issued: 2020
- Authors: Jones, Benjamin Martin
- Date: 2020
- Subjects: Nanoparticles , Phthalocyanines , Electrospinning , Porphyrins , Nanofibers , Photocatalysis , Photocatalysis -- Environmental aspects
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/164770 , vital:41163
- Description: This work explores the synthesis and characterisation of novel symmetrical phthalocyanines and novel asymmetric porphyrins that have been embedded or linked respectively,and electrospun into fibres for application in the photocatalysis of environmental pollutants. The phthalocyanines contain pyrrole moieties without hetero atom linkers to maintain a rigid structure. The porphyrin contains a carboxy moiety utilized to construct an amide bond between the complex and the polymer prior to the spinning process. The new compounds were characterized by elemental analyses, proton nuclear magnetic resonance (HNMR)Fourier-transform infrared spectroscopy (FTIR), MALDI-TOF and UV-vis spectroscopy. The general trends of fluorescence, triplet and singlet oxygen quantum yields are described as well as their appropriate lifetimes. The photocatalytic activity of phthalocyanine embedded fibres were compared against those that had been dyed. Unfortunately, during the degradation process, the dyed fibres leeched compound and the studies could not be continued. It was seen that the porphyrin fibres linked to the polymer showed the most efficient photocatalytic activity against 4-cholorphenol and 4-nonylphenol due to irradiation at lower wavelengths consequently having higher frequencies and transferring more energy.
- Full Text:
- Date Issued: 2020
Fabrication, characterization and application of phthalocyanine-magnetite hybrid nanofibers
- Authors: Modisha, Phillimon Mokanne
- Date: 2014
- Subjects: Nanofibers , Nanoparticles , Magnetite
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4500 , http://hdl.handle.net/10962/d1013223
- Description: Magnetic nanoparticles comprising magnetite (Fe3O4) were functionalized with 3-aminopropyl-triethoxysilane forming amino functionalized magnetite nanoparticles (AMNPs). The amino group allows for conjugation with zinc octacarboxyphthalocyanine (ZnOCPc) or zinc tetracarboxyphthalocyanine (ZnTCPc) via the carboxyl group to form an amide bond. A reduced aggregation of ZnTCPc is observed after conjugation with AMNPs. The thermal stability, conjugation, morphology and the sizes of the nanoparticles and their conjugates were confirmed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and Powder X-ray diffractometry (PXRD), respectively. The covalent linkage of AMNPs to ZnOCPc or ZnTCPc resulted in improvement in the photophysical behavior of the phthalocyanines. Improvement in the triplet quantum yield (ΦT), singlet oxygen quantum yield (ΦΔ), triplet lifetime (τT) and singlet oxygen lifetime (τΔ) of the ZnOCPc or ZnTCPc were observed, hence improving the photosensitizers efficiency. The conjugates comprising of zinc octacarboxyphthalocyanine (ZnOCPc) and AMNPs were electrospun into fibers using polyamide-6 (PA-6). This was used for the photodegradation of Orange-G and compared with ZnOCPc-AMNPs in suspension. For ZnOCPc-AMNPs in suspension, it is noteworthy that the catalyst can be easily recovered using an external magnetic field. The singlet oxygen generation increases as we increase the fiber diameter by increasing the ZnOCPc concentration. The singlet oxygen quantum yield is higher for PA-6/ZnOCPc-AMNPs nanofibers when compared to PA-6/ZnOCPc. The rate of degradation of Orange-G increased with an increase in the singlet oxygen quantum yield. Moreover, the kinetic analysis showed that the photodecomposition of Orange-G is a first-order reaction according to the Langmuir-Hinshelwood model.
- Full Text:
- Date Issued: 2014
- Authors: Modisha, Phillimon Mokanne
- Date: 2014
- Subjects: Nanofibers , Nanoparticles , Magnetite
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4500 , http://hdl.handle.net/10962/d1013223
- Description: Magnetic nanoparticles comprising magnetite (Fe3O4) were functionalized with 3-aminopropyl-triethoxysilane forming amino functionalized magnetite nanoparticles (AMNPs). The amino group allows for conjugation with zinc octacarboxyphthalocyanine (ZnOCPc) or zinc tetracarboxyphthalocyanine (ZnTCPc) via the carboxyl group to form an amide bond. A reduced aggregation of ZnTCPc is observed after conjugation with AMNPs. The thermal stability, conjugation, morphology and the sizes of the nanoparticles and their conjugates were confirmed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and Powder X-ray diffractometry (PXRD), respectively. The covalent linkage of AMNPs to ZnOCPc or ZnTCPc resulted in improvement in the photophysical behavior of the phthalocyanines. Improvement in the triplet quantum yield (ΦT), singlet oxygen quantum yield (ΦΔ), triplet lifetime (τT) and singlet oxygen lifetime (τΔ) of the ZnOCPc or ZnTCPc were observed, hence improving the photosensitizers efficiency. The conjugates comprising of zinc octacarboxyphthalocyanine (ZnOCPc) and AMNPs were electrospun into fibers using polyamide-6 (PA-6). This was used for the photodegradation of Orange-G and compared with ZnOCPc-AMNPs in suspension. For ZnOCPc-AMNPs in suspension, it is noteworthy that the catalyst can be easily recovered using an external magnetic field. The singlet oxygen generation increases as we increase the fiber diameter by increasing the ZnOCPc concentration. The singlet oxygen quantum yield is higher for PA-6/ZnOCPc-AMNPs nanofibers when compared to PA-6/ZnOCPc. The rate of degradation of Orange-G increased with an increase in the singlet oxygen quantum yield. Moreover, the kinetic analysis showed that the photodecomposition of Orange-G is a first-order reaction according to the Langmuir-Hinshelwood model.
- Full Text:
- Date Issued: 2014
Polymer based electrospun nanofibers as diagnostic probes for the detection of toxic metal ions in water
- Authors: Ondigo, Dezzline Adhiambo
- Date: 2013
- Subjects: Heavy metals , Nanofibers , Nanoparticles , Colorimetric analysis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4557 , http://hdl.handle.net/10962/d1018261
- Description: The thesis presents the development of polymer based electrospun nanofibers as diagnostic probes for the selective detection of toxic metal ions in water. Through modification of the chemical characteristics of nanofibers by pre- and post-electrospinning treatments, three different diagnostic probes were successfully developed. These were the fluorescent pyridylazo-2-naphthol-poly(acrylic acid) nanofiber probe, the colorimetric probe based on glutathione-stabilized silver/copper alloy nanoparticles and the colorimetric probe based on 2-(2’-Pyridyl)-imidazole functionalized nanofibers. The probes were characterized by Fourier transform infrared spectroscopy (FTIR), Energy dispersive x-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The fluorescent nanofiber probe was developed towards the determination of Ni²⁺. Covalently functionalized pyridylazo-2-naphthol-poly(acrylic acid) polymeric nanofibers were employed. The solid state Ni²⁺ probe exhibited a good correlation between the fluorescence intensity and nickel concentration up to 1.0 mg/mL based on the Stern-Volmer mechanism. The detection limit of the nanofiber probe was found to be 0.07 ng/mL. The versatility of the fluorescent probe was demonstrated by affording a simple, rapid and selective detection of Ni²⁺ in the presence of other competing metal ions by direct analysis without employing any sample handling steps. For the second part of the study, a simple strategy based on the in-situ synthesis of the glutathione stabilized silver/copper alloy nanoparticles (Ag/Cu alloy NPs) in nylon 6 provided a fast procedure for fabricating a colorimetric probe for the detection of Ni²⁺ in water samples. The electrospun nanofiber composites responded to Ni²⁺ ions but did not suffer any interference from the other metal ions. The effect of Ni²⁺ concentration on the nanocomposite fibers was considered and the “eye-ball” limit of detection was found to be 5.8 μg/mL. Lastly, the third probe was developed by covalently linking an imidazole derivative; 2-(2′-Pyridyl)-imidazole (PIMH) to Poly(vinylbenzyl chloride) (PVBC) and nylon 6 nanofibers by post-electrospinning treatments using a wet chemical method and graft copolymerization technique, respectively. The post-electrospinning modifications of the nanofibers were achieved without altering their fibrous morphology. The color change to red-orange in the presence of Fe²⁺ for both the grafted nylon 6 (white) and the chemically modified PVBC (yellow) nanofibers was instantaneous. The developed diagnostic probes exhibited the desired selectivity towards the targeted metal ions.
- Full Text:
- Date Issued: 2013
- Authors: Ondigo, Dezzline Adhiambo
- Date: 2013
- Subjects: Heavy metals , Nanofibers , Nanoparticles , Colorimetric analysis
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:4557 , http://hdl.handle.net/10962/d1018261
- Description: The thesis presents the development of polymer based electrospun nanofibers as diagnostic probes for the selective detection of toxic metal ions in water. Through modification of the chemical characteristics of nanofibers by pre- and post-electrospinning treatments, three different diagnostic probes were successfully developed. These were the fluorescent pyridylazo-2-naphthol-poly(acrylic acid) nanofiber probe, the colorimetric probe based on glutathione-stabilized silver/copper alloy nanoparticles and the colorimetric probe based on 2-(2’-Pyridyl)-imidazole functionalized nanofibers. The probes were characterized by Fourier transform infrared spectroscopy (FTIR), Energy dispersive x-ray spectroscopy (EDX), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The fluorescent nanofiber probe was developed towards the determination of Ni²⁺. Covalently functionalized pyridylazo-2-naphthol-poly(acrylic acid) polymeric nanofibers were employed. The solid state Ni²⁺ probe exhibited a good correlation between the fluorescence intensity and nickel concentration up to 1.0 mg/mL based on the Stern-Volmer mechanism. The detection limit of the nanofiber probe was found to be 0.07 ng/mL. The versatility of the fluorescent probe was demonstrated by affording a simple, rapid and selective detection of Ni²⁺ in the presence of other competing metal ions by direct analysis without employing any sample handling steps. For the second part of the study, a simple strategy based on the in-situ synthesis of the glutathione stabilized silver/copper alloy nanoparticles (Ag/Cu alloy NPs) in nylon 6 provided a fast procedure for fabricating a colorimetric probe for the detection of Ni²⁺ in water samples. The electrospun nanofiber composites responded to Ni²⁺ ions but did not suffer any interference from the other metal ions. The effect of Ni²⁺ concentration on the nanocomposite fibers was considered and the “eye-ball” limit of detection was found to be 5.8 μg/mL. Lastly, the third probe was developed by covalently linking an imidazole derivative; 2-(2′-Pyridyl)-imidazole (PIMH) to Poly(vinylbenzyl chloride) (PVBC) and nylon 6 nanofibers by post-electrospinning treatments using a wet chemical method and graft copolymerization technique, respectively. The post-electrospinning modifications of the nanofibers were achieved without altering their fibrous morphology. The color change to red-orange in the presence of Fe²⁺ for both the grafted nylon 6 (white) and the chemically modified PVBC (yellow) nanofibers was instantaneous. The developed diagnostic probes exhibited the desired selectivity towards the targeted metal ions.
- Full Text:
- Date Issued: 2013
The development of platinum and palladium-selective polymeric materials
- Authors: Fayemi, Omolola Esther
- Date: 2013 , 2013-05-03
- Subjects: Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4287 , http://hdl.handle.net/10962/d1002964 , Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species (PtCl₆²⁻ and PdCl₄²⁻) on polystyrene-based beads and nanofibers as well as silica microparticles functionalized with polyamine centres derived from ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) is described. The functionalized sorbent materials were characterized by using microanalysis, SEM, XPS, BET and FTIR. The nanofiber sorbent material functionalized with ethylenediamine (F-EDA) had the highest loading capacity which was attributed to its high nitrogen content (10.83%) and larger surface area (241.3m²/g). The adsorption and loading capacities of the sorption materials were investigated using both the batch and column studies in 1 M HCI. The adsorption studies for both PtCl₆²⁻ and PdCl₄²⁻ on the polystyrene-based sorbent materials fit the Langmuir isotherm while the silica-based sorbents fitted the Freundlich isotherm with R² values > 0.99. In the column experiment the highest loading capacity of Pt and Pd were 7.4 mg/g and 4.3 mg/g respectively on the nanofiber sorbent material based on ethylenediamine (EDA). The polystyrene and silica-based resins with triethylenetetramine (TETA) functionality (M-TETA and S-TETA) showed selectivity for platinum and palladium, respectively. Metal chlorido complexes loaded on the sorbent materials were recovered by using 3% m/v thiourea solution as teh eluting agent with quantitative desorption efficiency under the selected experimental conditions. The separation of platinum from palladium was partially achieved by selective stripping of PtCl₆²⁻ with 0.5 M of NaClO₄ in 1.0 M HCI with PdCl₄²⁻ was eluted with 0.5 M thiourea in 1.0 M HCI. The selectivity of the M-TETA and S-TETA sorbent materials was proved by column separation of platinum(IV) and palladium(II), respectively, from synthetic solutions containing iridium(IV) and rhodium(III). The loading capacity for platinum on M-TETA was 0.09 mg/g while it was 0.27 mg/g for palladium on S-TETA. , Acrobat PDFMaker 10.1 for Word , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2013
- Authors: Fayemi, Omolola Esther
- Date: 2013 , 2013-05-03
- Subjects: Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:4287 , http://hdl.handle.net/10962/d1002964 , Polymers , Platinum , Palladium , Adsorption , Sorbents , Nanofibers , Amines , Nanoparticles
- Description: The adsorption and separation of platinum(IV) and palladium(II) chlorido species (PtCl₆²⁻ and PdCl₄²⁻) on polystyrene-based beads and nanofibers as well as silica microparticles functionalized with polyamine centres derived from ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetriamine (TETA) and tris-(2-aminoethyl)amine (TAEA) is described. The functionalized sorbent materials were characterized by using microanalysis, SEM, XPS, BET and FTIR. The nanofiber sorbent material functionalized with ethylenediamine (F-EDA) had the highest loading capacity which was attributed to its high nitrogen content (10.83%) and larger surface area (241.3m²/g). The adsorption and loading capacities of the sorption materials were investigated using both the batch and column studies in 1 M HCI. The adsorption studies for both PtCl₆²⁻ and PdCl₄²⁻ on the polystyrene-based sorbent materials fit the Langmuir isotherm while the silica-based sorbents fitted the Freundlich isotherm with R² values > 0.99. In the column experiment the highest loading capacity of Pt and Pd were 7.4 mg/g and 4.3 mg/g respectively on the nanofiber sorbent material based on ethylenediamine (EDA). The polystyrene and silica-based resins with triethylenetetramine (TETA) functionality (M-TETA and S-TETA) showed selectivity for platinum and palladium, respectively. Metal chlorido complexes loaded on the sorbent materials were recovered by using 3% m/v thiourea solution as teh eluting agent with quantitative desorption efficiency under the selected experimental conditions. The separation of platinum from palladium was partially achieved by selective stripping of PtCl₆²⁻ with 0.5 M of NaClO₄ in 1.0 M HCI with PdCl₄²⁻ was eluted with 0.5 M thiourea in 1.0 M HCI. The selectivity of the M-TETA and S-TETA sorbent materials was proved by column separation of platinum(IV) and palladium(II), respectively, from synthetic solutions containing iridium(IV) and rhodium(III). The loading capacity for platinum on M-TETA was 0.09 mg/g while it was 0.27 mg/g for palladium on S-TETA. , Acrobat PDFMaker 10.1 for Word , Adobe Acrobat 9.54 Paper Capture Plug-in
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »