Biogeographic patterns of endolithic cyanobacteria and their negative impacts on mussels along the South African coast
- Authors: Ndhlovu, Aldwin
- Date: 2020
- Subjects: Cyanobacteria -- South Africa , Cyanobacteria -- Geographical distribution , Prokaryotes -- South Africa , Mexilhao mussel -- South Africa , Mytilus galloprovincialis -- South Africa , Coastal biology -- South Africa , Coastal ecology -- South Africa , Mussels -- Geographical distribution , Mussels -- Predators of , Mussels -- Mortality -- South Africa , Mussels -- Ecology -- South Africa , Mussels -- Growth -- South Africa , Mussels -- Fertility -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/144656 , vital:38367
- Description: Endolithic cyanobacterial species occur in a wide range of environments including cold and hot deserts as well as marine systems where they attack biological material such as corals and the shells of molluscs including limpets, mussels and abalone. Endoliths live as parasites in mussel shells, where they erode and extract calcium carbonate leading to shell weakening, creating fracture holes that lead to shell collapse and death, but they also have positive effects when they lead to discolouration of mussel shells hence giving them the ability to reduce stressful heat gain during periods of extreme heat stress. Mussels are ecological engineers on which the abundance and diversity of associated species assemblages depend. Understanding how endolithic cyanobacteria affect mussels will not only help in predicting future patterns of mussel abundances, but also future patterns of the infauna that depend on them. Firstly, I identified endolithic species infesting mussels and assessed the prevalence of endolithic parasitism in two intertidal mussel species in South Africa, the native Perna perna and the invasive Mytilus galloprovincialis. Large-scale surveys of endolithic infestation of mussels were conducted along 2500 km of the South African coast, covering three biogeographic regions: the subtropical east coast, dominated by P. perna, the warm temperate south coast where the indigenous species coexists with M. galloprovincialis, and the cool temperate west coast which is dominated by M. galloprovincialis. The prevalence of endolithic infestation was higher in the cool temperate bioregion than in the warm temperate and subtropical bioregions which did not differ and for P. perna endolithic species assemblages revealed clear groupings by bioregion. Results for endolithic induced mortality followed the same trend, with no significant difference between the two mussel species where they coexist and these results attribute biogeography of endoliths to environmental factors rather than host identity. Secondly, I assessed energy budgets of infested and clean mussels, to evaluate the energetic cost of infestation. This involved measuring energy acquisition, expenditure, calculating scope for growth and lethal temperatures (LT50s). The results revealed that endolithic cyanobacteria have a negative effect on scope for growth due to increased metabolic rates for infested mussels, with no effect of endoliths on the rates or efficiency of energy acquisition through filtration and no effect on lethal temperatures. The effects of infestation were then examined in more detail through a qualitative and quantitative analysis of mussel gonads and byssal attachment strength to the substratum. Endolithic infestation was found to affect reproduction by affecting the size (mass) of gonads, but not the density of eggs within them. Attachment strength was affected by endolithic infestation with very infested mussels requiring much less force to detach them from the substratum compared to mussels with low or no infestation. These results show that endolithic infestation affects mussel fitness by directly affecting attachment strength and by reducing their reproductive output. Thirdly, endolithic succession within mussel shells was examined by assessing endolithic species composition in different regions of the shell and as a function of time. The results on the spatial distribution of endolith species within a shell supported those for temporal succession in shells deployed in the field. Endolithic species that were early colonists of clean shells were similar to those that were found in the distal edge, the new and growing region of the shell and species that arrived late in succession were similar to endolithic species found near the umbo, the oldest region of the shell. Overall, the study shows that endolithic cyanobacteria show the effects of biogeography on species distribution and clear patterns of succession within mussel shells. Cyanobacteria affect mussels negatively; they lead to low scope for growth and hence low growth rates, low reproductive output and reduced attachment strength for infested mussels. This, in turn is expected to have indirect consequences for other species that rely on mussels as ecological engineers for their survival.
- Full Text:
- Date Issued: 2020
The effect of mussel bed structure on the associated infauna in South Africa and the interaction between mussel and epibiotic barnacles
- Authors: Jordaan, Tembisa Nomathamsanqa
- Date: 2011
- Subjects: Mytilidae -- South Africa , Mytilus galloprovincialis -- South Africa , Mussel culture -- South Africa , Shellfish culture -- South Africa , Perna -- South Africa , Barnacles -- South Africa , Mussels -- South Africa , Mussels -- Ecology , Barnacles -- Ecology
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5675 , http://hdl.handle.net/10962/d1005360 , Mytilidae -- South Africa , Mytilus galloprovincialis -- South Africa , Mussel culture -- South Africa , Shellfish culture -- South Africa , Perna -- South Africa , Barnacles -- South Africa , Mussels -- South Africa , Mussels -- Ecology , Barnacles -- Ecology
- Description: Mussels are important ecological engineers on intertidal rocks where they create habitat that contributes substantially to overall biodiversity. They provide secondary substratum for other free-living, infaunal or epifaunal organisms, and increase the surface area for settlement by densely packing together into complex multilayered beds. The introduction of the alien invasive mussel Mytilus galloprovincialis has extended the upper limit of mussels on the south coast of South Africa, potentially increasing habitat for associated fauna. The aim of this study was to describe the structure of mussel beds, the general biodiversity associated with multi- and monolayered mussel beds of indigenous Perna perna and alien M. galloprovincialis, and to determine the relationship between mussels and epibiotic barnacles. This was done to determine the community structure of associated macrofauna and the role of mussels as biological facilitators. Samples were collected in Plettenberg Bay, South Africa, where M. galloprovincialis dominates the high mussel zone and P. perna the low zone. Three 15 X 15 cm quadrats were scraped off the rock in the high and low zones, and in the mid zone where the two mussel species co-exist. The samples were collected on 3 occasions. In the laboratory mussel-size was measured and sediment trapped within the samples was separated through 75 μm, 1 mm and 5 mm mesh. The macrofauna was sorted from the 1 mm and 5 mm sieves and identified to species level where possible. The epibiotic relationship between mussels and barnacles was assessed by measuring the prevalence and intensity of barnacle infestation and the condition index of infested mussels. Multivariate analysis was used on the mean abundance data of the species for each treatment (Hierarchical clustering, multidimensional scaling, analysis of similarity and similarity of percentages) and ANOVA was used for most of the statistical analyses. Overall, the results showed that tidal height influences the species composition and abundance of associated fauna. While mussel bed layering influenced the accumulation of sediments; it had no significant effect on the associated fauna. Time of collection also had a strong effect. While there was an overlap of species among samples from January, May and March, the principal species contributing to similarity among the March samples were not found in the other two months. The outcomes of this study showed that low shore mussel beds not only supported a higher abundance and diversity of species, but were also the most structurally complex. Although the condition index of mussels did not correlate to the percentage cover of barnacle epibionts, it was also evident that low shore mussels had the highest prevalence. The levels of barnacle infestation (intensity) for each mussel species were highest where it was common and lowest where it was least abundant. This is viewed as a natural artefact of the distribution patterns of P. perna and M. galloprovincialis across the shore. Mussels are more efficient as facilitators on the low mussel zone than the high mussel zone possibly because they provide habitats that are more effective in protecting the associated macrofauna from the effects of competition and predation, than they are at eliminating the effects of physical stress on the high shore. Although mussels create less stressful habitats and protect organisms from the physical stress of the high shore, there are clear limitations in their ability to provide ideal habitats. The biological associations in an ecosystem can be made weak or strong depending on the external abiotic factors and the adaptability of the affected organisms.
- Full Text:
- Date Issued: 2011
The effects of the invasive mussel mytilus galloprovincialis and human exploitation on the indigenous mussel Perna perna on the South Coast of South Africa
- Authors: Rius Viladomiu, Marc
- Date: 2005
- Subjects: Mussels -- South Africa , Perna -- South Africa , Mytilus galloprovincialis -- South Africa , Mytilidae -- South Africa , Biological invasions , Marine resources conservation -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5684 , http://hdl.handle.net/10962/d1005370 , Mussels -- South Africa , Perna -- South Africa , Mytilus galloprovincialis -- South Africa , Mytilidae -- South Africa , Biological invasions , Marine resources conservation -- South Africa
- Description: In South Africa, the indigenous mussel Perna perna is threatened by both an invasive species and excessive human exploitation. The Mediterranean mussel Mytilus galloprovincialis is an invasive species that has been introduced to many parts of the world. In South Africa, this species arrived in the 1970s and spread rapidly along the west coast where today it is the dominant mussel species. Along the west coast, M. galloprovincialis is competitively superior in all aspects to the indigenous mussel species, and, as a result, has displaced some of them. On the south coast, M. galloprovincialis found more oligotrophic waters, higher species richness, and a stronger competitor in the indigenous mussel P. perna. The rate of spread of M. galloprovincialis along the south coast has decreased over the last 10 years and the present eastern limit of its distribution in South African is East London. On the south coast, M. galloprovincialis has not yet completely replaced P. perna; instead, the two exhibit spatial segregation, with P. perna dominating the low shore, M. galloprovincialis the high shore and an overlap zone between the two. An experiment on competition was carried out at one site on the south coast. The results showed that, on the low shore, P. perna is a more dominant competitor for space than M. galloprovincialis. Also byssus attachment of the two species differs, P. perna being much stronger than M. galloprovincialis, which suffers high mortality due to wave action on the low shore, especially in monospecific beds. As a result, mortality of M. galloprovincialis through wave action is reduced by the presence of P. perna, which seems to confer protection against dislodgement. However, in the absence of strong wave action, P. perna competitively excludes M. galloprovincialis. Human exploitation along 160 km of coast was examined by sampling mussel populations and using aerial surveys to determine where harvesters were distributed. Collectors did not seem to discriminate between species. The study has shown that higher abundances of mussels were found in protected or inaccessible sites, while in unprotected sites mussels were scarce. Coastal nature reserves are being proven to be effective in protecting mussel populations.
- Full Text:
- Date Issued: 2005