The development of an ionospheric storm-time index for the South African region
- Authors: Tshisaphungo, Mpho
- Date: 2021-04
- Subjects: Ionospheric storms -- South Africa , Global Positioning System , Neural networks (Computer science) , Regression analysis , Ionosondes , Auroral electrojet , Geomagnetic indexes , Magnetic storms -- South Africa
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/178409 , vital:42937 , 10.21504/10962/178409
- Description: This thesis presents the development of a regional ionospheric storm-time model which forms the foundation of an index to provide a quick view of the ionospheric storm effects over South African mid-latitude region. The model is based on the foF2 measurements from four South African ionosonde stations. The data coverage for the model development over Grahamstown (33.3◦S, 26.5◦E), Hermanus (34.42◦S, 19.22◦E), Louisvale (28.50◦S, 21.20◦E), and Madimbo (22.39◦S, 30.88◦E) is 1996-2016, 2009-2016, 2000-2016, and 2000-2016 respectively. Data from the Global Positioning System (GPS) and radio occultation (RO) technique were used during validation. As the measure of either positive or negative storm effect, the variation of the critical frequency of the F2 layer (foF2) from the monthly median values (denoted as _foF2) is modeled. The modeling of _foF2 is based on only storm time data with the criteria of Dst 6 -50 nT and Kp > 4. The modeling methods used in the study were artificial neural network (ANN), linear regression (LR) and polynomial functions. The approach taken was to first test the modeling techniques on a single station before expanding the study to cover the regional aspect. The single station modeling was developed based on ionosonde data over Grahamstown. The inputs for the model which related to seasonal variation, diurnal variation, geomagnetic activity and solar activity were considered. For the geomagnetic activity, three indices namely; the symmetric disturbance in the horizontal component of the Earth’s magnetic field (SYM − H), the Auroral Electrojet (AE) index and local geomagnetic index A, were included as inputs. The performance of a single station model revealed that, of the three geomagnetic indices, SYM − H index has the largest contribution of 41% and 54% based on ANN and LR techniques respectively. The average correlation coefficients (R) for both ANN and LR models was 0.8, when validated during the selected storms falling within the period of model development. When validated using storms that fall outside the period of model development, the model gave R values of 0.6 and 0.5 for ANN and LR respectively. In addition, the GPS total electron content (TEC) derived measurements were used to estimate foF2 data. This is because there are more GPS receivers than ionosonde locations and the utilisation of this data increases the spatial coverage of the regional model. The estimation of foF2 from GPS TEC was done at GPS-ionosonde co-locations using polynomial functions. The average R values of 0.69 and 0.65 were obtained between actual and derived _foF2 over the co-locations and other GPS stations respectively. Validation of GPS TEC derived foF2 with RO data over regions out of ionospheric pierce points coverage with respect to ionosonde locations gave R greater than 0.9 for the selected storm period of 4-8 August 2011. The regional storm-time model was then developed based on the ANN technique using the four South African ionosonde stations. The maximum and minimum R values of 0.6 and 0.5 were obtained over ionosonde and GPS locations respectively. This model forms the basis towards the regional ionospheric storm-time index. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2021
- Full Text:
- Date Issued: 2021-04
- Authors: Tshisaphungo, Mpho
- Date: 2021-04
- Subjects: Ionospheric storms -- South Africa , Global Positioning System , Neural networks (Computer science) , Regression analysis , Ionosondes , Auroral electrojet , Geomagnetic indexes , Magnetic storms -- South Africa
- Language: English
- Type: thesis , text , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/178409 , vital:42937 , 10.21504/10962/178409
- Description: This thesis presents the development of a regional ionospheric storm-time model which forms the foundation of an index to provide a quick view of the ionospheric storm effects over South African mid-latitude region. The model is based on the foF2 measurements from four South African ionosonde stations. The data coverage for the model development over Grahamstown (33.3◦S, 26.5◦E), Hermanus (34.42◦S, 19.22◦E), Louisvale (28.50◦S, 21.20◦E), and Madimbo (22.39◦S, 30.88◦E) is 1996-2016, 2009-2016, 2000-2016, and 2000-2016 respectively. Data from the Global Positioning System (GPS) and radio occultation (RO) technique were used during validation. As the measure of either positive or negative storm effect, the variation of the critical frequency of the F2 layer (foF2) from the monthly median values (denoted as _foF2) is modeled. The modeling of _foF2 is based on only storm time data with the criteria of Dst 6 -50 nT and Kp > 4. The modeling methods used in the study were artificial neural network (ANN), linear regression (LR) and polynomial functions. The approach taken was to first test the modeling techniques on a single station before expanding the study to cover the regional aspect. The single station modeling was developed based on ionosonde data over Grahamstown. The inputs for the model which related to seasonal variation, diurnal variation, geomagnetic activity and solar activity were considered. For the geomagnetic activity, three indices namely; the symmetric disturbance in the horizontal component of the Earth’s magnetic field (SYM − H), the Auroral Electrojet (AE) index and local geomagnetic index A, were included as inputs. The performance of a single station model revealed that, of the three geomagnetic indices, SYM − H index has the largest contribution of 41% and 54% based on ANN and LR techniques respectively. The average correlation coefficients (R) for both ANN and LR models was 0.8, when validated during the selected storms falling within the period of model development. When validated using storms that fall outside the period of model development, the model gave R values of 0.6 and 0.5 for ANN and LR respectively. In addition, the GPS total electron content (TEC) derived measurements were used to estimate foF2 data. This is because there are more GPS receivers than ionosonde locations and the utilisation of this data increases the spatial coverage of the regional model. The estimation of foF2 from GPS TEC was done at GPS-ionosonde co-locations using polynomial functions. The average R values of 0.69 and 0.65 were obtained between actual and derived _foF2 over the co-locations and other GPS stations respectively. Validation of GPS TEC derived foF2 with RO data over regions out of ionospheric pierce points coverage with respect to ionosonde locations gave R greater than 0.9 for the selected storm period of 4-8 August 2011. The regional storm-time model was then developed based on the ANN technique using the four South African ionosonde stations. The maximum and minimum R values of 0.6 and 0.5 were obtained over ionosonde and GPS locations respectively. This model forms the basis towards the regional ionospheric storm-time index. , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2021
- Full Text:
- Date Issued: 2021-04
Updating the ionospheric propagation factor, M(3000)F2, global model using the neural network technique and relevant geophysical input parameters
- Oronsaye, Samuel Iyen Jeffrey
- Authors: Oronsaye, Samuel Iyen Jeffrey
- Date: 2013
- Subjects: Neural networks (Computer science) , Ionospheric radio wave propagation , Ionosphere , Geophysics , Ionosondes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5434 , http://hdl.handle.net/10962/d1001609 , Neural networks (Computer science) , Ionospheric radio wave propagation , Ionosphere , Geophysics , Ionosondes
- Description: This thesis presents an update to the ionospheric propagation factor, M(3000)F2, global empirical model developed by Oyeyemi et al. (2007) (NNO). An additional aim of this research was to produce the updated model in a form that could be used within the International Reference Ionosphere (IRI) global model without adding to the complexity of the IRI. M(3000)F2 is the highest frequency at which a radio signal can be received over a distance of 3000 km after reflection in the ionosphere. The study employed the artificial neural network (ANN) technique using relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. Ionosonde data from 135 ionospheric stations globally, including a number of equatorial stations, were available for this work. M(3000)F2 hourly values from 1976 to 2008, spanning all periods of low and high solar activity were used for model development and verification. A preliminary investigation was first carried out using a relatively small dataset to determine the appropriate input parameters for global M(3000)F2 parameter modelling. Inputs representing diurnal variation, seasonal variation, solar variation, modified dip latitude, longitude and latitude were found to be the optimum parameters for modelling the diurnal and seasonal variations of the M(3000)F2 parameter both on a temporal and spatial basis. The outcome of the preliminary study was applied to the overall dataset to develop a comprehensive ANN M(3000)F2 model which displays a remarkable improvement over the NNO model as well as the IRI version. The model shows 7.11% and 3.85% improvement over the NNO model as well as 13.04% and 10.05% over the IRI M(3000)F2 model, around high and low solar activity periods respectively. A comparison of the diurnal structure of the ANN and the IRI predicted values reveal that the ANN model is more effective in representing the diurnal structure of the M(3000)F2 values than the IRI M(3000)F2 model. The capability of the ANN model in reproducing the seasonal variation pattern of the M(3000)F2 values at 00h00UT, 06h00UT, 12h00UT, and l8h00UT more appropriately than the IRI version is illustrated in this work. A significant result obtained in this study is the ability of the ANN model in improving the post-sunset predicted values of the M(3000)F2 parameter which is known to be problematic to the IRI M(3000)F2 model in the low-latitude and the equatorial regions. The final M(3000)F2 model provides for an improved equatorial prediction and a simplified input space that allows for easy incorporation into the IRI model.
- Full Text:
- Date Issued: 2013
- Authors: Oronsaye, Samuel Iyen Jeffrey
- Date: 2013
- Subjects: Neural networks (Computer science) , Ionospheric radio wave propagation , Ionosphere , Geophysics , Ionosondes
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5434 , http://hdl.handle.net/10962/d1001609 , Neural networks (Computer science) , Ionospheric radio wave propagation , Ionosphere , Geophysics , Ionosondes
- Description: This thesis presents an update to the ionospheric propagation factor, M(3000)F2, global empirical model developed by Oyeyemi et al. (2007) (NNO). An additional aim of this research was to produce the updated model in a form that could be used within the International Reference Ionosphere (IRI) global model without adding to the complexity of the IRI. M(3000)F2 is the highest frequency at which a radio signal can be received over a distance of 3000 km after reflection in the ionosphere. The study employed the artificial neural network (ANN) technique using relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. Ionosonde data from 135 ionospheric stations globally, including a number of equatorial stations, were available for this work. M(3000)F2 hourly values from 1976 to 2008, spanning all periods of low and high solar activity were used for model development and verification. A preliminary investigation was first carried out using a relatively small dataset to determine the appropriate input parameters for global M(3000)F2 parameter modelling. Inputs representing diurnal variation, seasonal variation, solar variation, modified dip latitude, longitude and latitude were found to be the optimum parameters for modelling the diurnal and seasonal variations of the M(3000)F2 parameter both on a temporal and spatial basis. The outcome of the preliminary study was applied to the overall dataset to develop a comprehensive ANN M(3000)F2 model which displays a remarkable improvement over the NNO model as well as the IRI version. The model shows 7.11% and 3.85% improvement over the NNO model as well as 13.04% and 10.05% over the IRI M(3000)F2 model, around high and low solar activity periods respectively. A comparison of the diurnal structure of the ANN and the IRI predicted values reveal that the ANN model is more effective in representing the diurnal structure of the M(3000)F2 values than the IRI M(3000)F2 model. The capability of the ANN model in reproducing the seasonal variation pattern of the M(3000)F2 values at 00h00UT, 06h00UT, 12h00UT, and l8h00UT more appropriately than the IRI version is illustrated in this work. A significant result obtained in this study is the ability of the ANN model in improving the post-sunset predicted values of the M(3000)F2 parameter which is known to be problematic to the IRI M(3000)F2 model in the low-latitude and the equatorial regions. The final M(3000)F2 model provides for an improved equatorial prediction and a simplified input space that allows for easy incorporation into the IRI model.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »