Assessing the invasive status of the Oenothera species (evening primroses) in South Africa
- Authors: Scott, Zimbini
- Date: 2023-10
- Subjects: Evening primrose , Invasive plants -- Biological control -- South Africa , Ecological assessment (Biology)
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/28414 , vital:74321
- Description: Oenothera species (Myrtales: Onagraceae), commonly known as evening primroses, were introduced to South Africa for various purposes, where they established alien populations and expanded their distribution nationwide. Although some of these species are listed as emerging invaders in South Africa, their invasive status is currently unclear. This study assessed the invasive status of eight Oenothera species listed as emerging invaders in South Africa, namely, O. biennis, O. glazioviana, O. laciniata, O. indecora, O. stricta, O. jamesii and O. rosea. The study also focused on the biotic interactions of Oenothera with native arthropod species to assess any potential ecological impacts. The distribution of the eight Oenothera species was mapped using available occurrence records from sources such as the SAPIA database, herbarium records, and BRAHMS database. Additional records were collected by conducting field surveys in KwaZulu- Natal and Eastern Cape provinces. The distribution of these species was mapped using QGIS. Most Oenothera species were found in the Eastern Cape, KwaZulu-Natal, Gauteng, Free State, Mpumalanga and Western Cape provinces, while North-West, Northern Cape, and Limpopo provinces had fewer species. The grassland, savanna and fynbos biomes had more Oenothera species than other biomes in South Africa. The results indicated that O. biennis, O. glaziviana, and O. rosea are spreading at a preceding rate. In South Africa, the species flower predominantly in the spring and summer seasons. Species distribution modelling was conducted using Maxent to identify climatically suitable areas for establishing evening primrose populations. Species distribution models results show that the climatically suitable areas are concentrated in the central, eastern, and south-western regions of South Africa. The most considerable climatic variables contributing to the distribution of most Oenothera species were the annual mean temperature and precipitation during the driest month. To evaluate biotic interactions between native arthropods and Oenothera species and assess the potential ecological impacts, arthropods were collected from two Oenothera species (O. biennis and O. glazioviana) in different localities (only in Eastern Cape: East London and Fort Beaufort). The arthropods collected were identified, and diversity indices were calculated to determine the diversity of native arthropods collected in sites where these species are present. The overall number of individual arthropods collected was 768, belonging to six orders. These arthropod species belong to three feeding guilds: herbivores, predators, and palynivores. The ANOVA results showed that these species statistically differ in diversity for all the diversity indices. Overall, there were significant interactions between the arthropods’ orders and their feeding guilds. Lastly, the risk analysis framework assessed the potential for managing and listing two species (O. biennis and O. rosea) in the NEM: BA A&IS list. After considering all the likelihood elements, environmental, socioeconomic, and potential impacts, the risks posed by Oenothera biennis in South Africa were found to be high. The recommendation of this analysis suggests that O. biennis and O. rosea species be listed as category 1b in the NEMBA A & IS regulations list. The results of this study indicate that these congeners experience ecological differences, resulting in their varied distribution and invasion. Furthermore, they offer new insights regarding the geographical patterns and potential distribution of Oenothera species in South Africa. Moreover, it also provides recommendations for the management of the species in the South African context. , Thesis (MSc) -- Faculty of Science and Agriculture, 2023
- Full Text:
- Date Issued: 2023-10
- Authors: Scott, Zimbini
- Date: 2023-10
- Subjects: Evening primrose , Invasive plants -- Biological control -- South Africa , Ecological assessment (Biology)
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/28414 , vital:74321
- Description: Oenothera species (Myrtales: Onagraceae), commonly known as evening primroses, were introduced to South Africa for various purposes, where they established alien populations and expanded their distribution nationwide. Although some of these species are listed as emerging invaders in South Africa, their invasive status is currently unclear. This study assessed the invasive status of eight Oenothera species listed as emerging invaders in South Africa, namely, O. biennis, O. glazioviana, O. laciniata, O. indecora, O. stricta, O. jamesii and O. rosea. The study also focused on the biotic interactions of Oenothera with native arthropod species to assess any potential ecological impacts. The distribution of the eight Oenothera species was mapped using available occurrence records from sources such as the SAPIA database, herbarium records, and BRAHMS database. Additional records were collected by conducting field surveys in KwaZulu- Natal and Eastern Cape provinces. The distribution of these species was mapped using QGIS. Most Oenothera species were found in the Eastern Cape, KwaZulu-Natal, Gauteng, Free State, Mpumalanga and Western Cape provinces, while North-West, Northern Cape, and Limpopo provinces had fewer species. The grassland, savanna and fynbos biomes had more Oenothera species than other biomes in South Africa. The results indicated that O. biennis, O. glaziviana, and O. rosea are spreading at a preceding rate. In South Africa, the species flower predominantly in the spring and summer seasons. Species distribution modelling was conducted using Maxent to identify climatically suitable areas for establishing evening primrose populations. Species distribution models results show that the climatically suitable areas are concentrated in the central, eastern, and south-western regions of South Africa. The most considerable climatic variables contributing to the distribution of most Oenothera species were the annual mean temperature and precipitation during the driest month. To evaluate biotic interactions between native arthropods and Oenothera species and assess the potential ecological impacts, arthropods were collected from two Oenothera species (O. biennis and O. glazioviana) in different localities (only in Eastern Cape: East London and Fort Beaufort). The arthropods collected were identified, and diversity indices were calculated to determine the diversity of native arthropods collected in sites where these species are present. The overall number of individual arthropods collected was 768, belonging to six orders. These arthropod species belong to three feeding guilds: herbivores, predators, and palynivores. The ANOVA results showed that these species statistically differ in diversity for all the diversity indices. Overall, there were significant interactions between the arthropods’ orders and their feeding guilds. Lastly, the risk analysis framework assessed the potential for managing and listing two species (O. biennis and O. rosea) in the NEM: BA A&IS list. After considering all the likelihood elements, environmental, socioeconomic, and potential impacts, the risks posed by Oenothera biennis in South Africa were found to be high. The recommendation of this analysis suggests that O. biennis and O. rosea species be listed as category 1b in the NEMBA A & IS regulations list. The results of this study indicate that these congeners experience ecological differences, resulting in their varied distribution and invasion. Furthermore, they offer new insights regarding the geographical patterns and potential distribution of Oenothera species in South Africa. Moreover, it also provides recommendations for the management of the species in the South African context. , Thesis (MSc) -- Faculty of Science and Agriculture, 2023
- Full Text:
- Date Issued: 2023-10
An initial investigation into biological control options for Schinus terebinthifolia in South Africa
- Magengelele, Nwabisa Laurencia
- Authors: Magengelele, Nwabisa Laurencia
- Date: 2020
- Subjects: Anacardiaceae -- Biological control -- South Africa , Plants, Ornamental -- South Africa , Invasive plants -- Biological control -- South Africa , Insects as biological pest control agents -- South Africa , Brazilian pepper tree -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/103835 , vital:32306
- Description: Schinus terebinthifolia Raddi (Anacardiaceae) (Brazilian pepper tree) is a native tree to subtropical South America that was introduced into South Africa as an ornamental plant. Globally, it is regarded as one of the world’s worst invasive trees. In South Africa, this aggressive pioneer species is becoming increasingly problematic and is being considered as a target for biological control. In South Africa the tree has acquired a native seed-feeding wasp, Megastigmus transvaalensis Hussey (Hymenoptera: Torymidae). The wasp’s native hosts are indigenous Rhus species (Anacardiaceae), but it has expanded its host range to form a new association with both S. terebinthifolia and its close relative S. molle L. (Anacardiaceae). In order to quantify the seed predation by M. transvaalensis on S. terebinthifolia seeds, tree populations were surveyed across the Eastern Cape and KwaZulu-Natal provinces. The wasp was present at 99% of the S. terebinthifolia populations with an average of 22% of the seeds being destroyed. In the Eastern Cape Province, the highest seed damage occurred at the start of the winter months, when about 35% of seeds were damaged. This fell to less than 12% in spring and summer when the plants were flowering. Megastigmus transvaalensis may have slowed the rate of spread of the plant, but it is unlikely to reduce population sizes of S. terebinthifolia in South Africa in the long-term. Biological control efforts can be assisted by knowing the origin and invasion history of the target species. Genetic analyses are often the only way to elucidate the invasion history of invasive alien plants because it is rare to find detailed records of plant introductions. Both microsatellite and chloroplast DNA analysis were conducted on S. terebinthifolia trees from the plant’s introduced distribution in South Africa and both Florida and Hawaii, USA. These samples were compared to plants from the native distribution of South America. The analysis indicated that the S. terebinthifolia in South Africa was most likely sourced from the state of Rio de Janeiro in Brazil, which is the same source of the invasive populations in Florida and Hawaii. Importantly, the South African populations were all found to be “haplotype A”. Plants samples collected from Hawaii USA were the closest match to the South African plants. Biological control agents known to damage haplotype A which have been considered for use in Hawaii and Florida should therefore be prioritised for South Africa. Schinus terebinthifolia has a broad distribution in South Africa; however, the majority of the current distribution is limited to the coastal regions along the eastern coast in KwaZulu-Natal Province. This suggests that the species may be climatically limited. Species distribution models in MaxEnt were used to predict the suitable ecological niche of the species. Using occurrence localities from both the native and invaded range to calibrate the models resulted in 56% of the modelled areas being considered suitable for the growth of S. terebinthifolia in South Africa. This included areas in the Eastern Cape, Western Cape and Limpopo provinces. When the models were calibrated using just the native range data, or just the invaded range data, predicted distributions were more restricted and limited to the coastal areas of the Eastern Cape and KwaZulu-Natal provinces. The coastal areas between Florianopolis and Santos in Brazil were highlighted as the most climatically similar to the invasive populations of S. terebinthifolia in South Africa. These areas should be prioritised if native range surveys for potential biological control agents are conducted in South America. Although the native seed-feeding wasp is damaging to S. terebinthifolia in South Africa, the tree is still not under suitable levels of biological control and is likely to spread and increase in density. New biological control agents are therefore required. Genetic and climatic matching has determined where the most appropriate region to collect new potential biological control agents is. The genetic matching data has also indicated that biological control agents that have been released, or are being considered for release, in Hawaii and Florida, are likely to be suitable for the South African plants because they have been shown to be damaging to ‘haplotype A’. These agents should therefore be the first to be considered for release in South Africa.
- Full Text:
- Date Issued: 2020
An initial investigation into biological control options for Schinus terebinthifolia in South Africa
- Authors: Magengelele, Nwabisa Laurencia
- Date: 2020
- Subjects: Anacardiaceae -- Biological control -- South Africa , Plants, Ornamental -- South Africa , Invasive plants -- Biological control -- South Africa , Insects as biological pest control agents -- South Africa , Brazilian pepper tree -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/103835 , vital:32306
- Description: Schinus terebinthifolia Raddi (Anacardiaceae) (Brazilian pepper tree) is a native tree to subtropical South America that was introduced into South Africa as an ornamental plant. Globally, it is regarded as one of the world’s worst invasive trees. In South Africa, this aggressive pioneer species is becoming increasingly problematic and is being considered as a target for biological control. In South Africa the tree has acquired a native seed-feeding wasp, Megastigmus transvaalensis Hussey (Hymenoptera: Torymidae). The wasp’s native hosts are indigenous Rhus species (Anacardiaceae), but it has expanded its host range to form a new association with both S. terebinthifolia and its close relative S. molle L. (Anacardiaceae). In order to quantify the seed predation by M. transvaalensis on S. terebinthifolia seeds, tree populations were surveyed across the Eastern Cape and KwaZulu-Natal provinces. The wasp was present at 99% of the S. terebinthifolia populations with an average of 22% of the seeds being destroyed. In the Eastern Cape Province, the highest seed damage occurred at the start of the winter months, when about 35% of seeds were damaged. This fell to less than 12% in spring and summer when the plants were flowering. Megastigmus transvaalensis may have slowed the rate of spread of the plant, but it is unlikely to reduce population sizes of S. terebinthifolia in South Africa in the long-term. Biological control efforts can be assisted by knowing the origin and invasion history of the target species. Genetic analyses are often the only way to elucidate the invasion history of invasive alien plants because it is rare to find detailed records of plant introductions. Both microsatellite and chloroplast DNA analysis were conducted on S. terebinthifolia trees from the plant’s introduced distribution in South Africa and both Florida and Hawaii, USA. These samples were compared to plants from the native distribution of South America. The analysis indicated that the S. terebinthifolia in South Africa was most likely sourced from the state of Rio de Janeiro in Brazil, which is the same source of the invasive populations in Florida and Hawaii. Importantly, the South African populations were all found to be “haplotype A”. Plants samples collected from Hawaii USA were the closest match to the South African plants. Biological control agents known to damage haplotype A which have been considered for use in Hawaii and Florida should therefore be prioritised for South Africa. Schinus terebinthifolia has a broad distribution in South Africa; however, the majority of the current distribution is limited to the coastal regions along the eastern coast in KwaZulu-Natal Province. This suggests that the species may be climatically limited. Species distribution models in MaxEnt were used to predict the suitable ecological niche of the species. Using occurrence localities from both the native and invaded range to calibrate the models resulted in 56% of the modelled areas being considered suitable for the growth of S. terebinthifolia in South Africa. This included areas in the Eastern Cape, Western Cape and Limpopo provinces. When the models were calibrated using just the native range data, or just the invaded range data, predicted distributions were more restricted and limited to the coastal areas of the Eastern Cape and KwaZulu-Natal provinces. The coastal areas between Florianopolis and Santos in Brazil were highlighted as the most climatically similar to the invasive populations of S. terebinthifolia in South Africa. These areas should be prioritised if native range surveys for potential biological control agents are conducted in South America. Although the native seed-feeding wasp is damaging to S. terebinthifolia in South Africa, the tree is still not under suitable levels of biological control and is likely to spread and increase in density. New biological control agents are therefore required. Genetic and climatic matching has determined where the most appropriate region to collect new potential biological control agents is. The genetic matching data has also indicated that biological control agents that have been released, or are being considered for release, in Hawaii and Florida, are likely to be suitable for the South African plants because they have been shown to be damaging to ‘haplotype A’. These agents should therefore be the first to be considered for release in South Africa.
- Full Text:
- Date Issued: 2020
Initiating biological control for Nymphaea mexicana zuccarini (Nymphaeaceae) in South Africa
- Authors: Reid, Megan Kim
- Date: 2020
- Subjects: Nymphaea mexicana zuccarini -- Biological control -- South Africa , Nymphaeaceae -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/144510 , vital:38352
- Description: Nymphaea mexicana Zuccarini (Nymphaeaceae) is an aquatic plant originating from south-eastern USA that is becoming increasingly invasive in South Africa as other invasive aquatic plants are being managed successfully through biological control. Mechanical and chemical control of aquatic weeds is expensive, damaging to the environment, and only effective in the short term, so biological control is more desirable as a management strategy for N. mexicana. The biological control of invasive alien plants requires that agents are host specific so that non-target risks are mitigated. For success to be achieved, it is important to ensure that the genetic structure of invasive populations is clarified so that agents can be collected from populations in the native range that match genetically to populations in the invasive range. This is especially important in cases where the morphology of invasive alien plants does not reflect genetic differences between populations. A previous study of the genetic structure of the invasive populations of N. mexicana in South Africa suggests the presence of hybrid forms of the plant in South Africa, with only one of these populations matching with samples from the native range. However, the study only used samples from two sites in the native range using amplified fragment length polymorphisms (AFLPs), so it was necessary to conduct further genetic analyses using samples from more sites in the native range. Hence, the first aim of this study was to develop a better understanding of the genetic structure of N. mexicana populations in the native and invaded range. Genetic samples were collected from sites in the native range during field surveys for potential biological control agents, and inter-simple sequence repeats (ISSRs) were used to compare the genetic structure of invasive and native populations of N. mexicana in South Africa. The results from these analyses suggest that seven of the 14 investigated invasive populations of N. mexicana in South Africa are genetically similar to populations in the native range, while the remaining seven populations are likely to be hybrid forms of the plant. This knowledge will be useful to target populations for biological control and highlights the need for further genetic analyses to determine the parentage of these hybrids so that biological control efforts are more likely to be successful. The initiation of a biological control programme requires that a series of steps are taken in order to maximise the likelihood that this form of intervention will be successful. The first few steps include: identification of the target weed and its genetic structure; exploration in the native range for potential biological control agents; and prioritisation of these agents based on factors such as climatic and genetic compatibility, feeding damage, abundance, and likely host range. Hence, the second aim of this study was to conduct surveys for potential biological control agents in the native range of N. mexicana, and to prioritise these agents. Field surveys were conducted between August and October in 2018 at 17 sites in Florida, Louisiana, and Texas, USA. Sites were selected based on climatic similarity of native sites compared to invasive sites by use of MaxEnt modelling. Native N. mexicana plants were searched for natural enemies, and these were prioritised based on feeding damage, abundance, incidence, and observations of field host range. Two species were prioritised: Bagous americanus LeConte (Coleoptera: Curculionidae) and Megamelus toddi Beamer (Hemiptera: Delphacidae). These species will be imported into quarantine facilities at Rhodes University for host specificity tests to be conducted. Understanding the factors that contribute to the successful establishment of biological control agents is important to improve the efficiency and reduce the costs incurred during the initiation of biological control programmes. Acquiring knowledge of the factors that predict the efficacy of biological control agents is similarly important, and these factors are discussed in the last chapter of this study. The challenges of the biological control of hybrids are also considered, and recommendations are made for the control of N. mexicana and other plants in South Africa.
- Full Text:
- Date Issued: 2020
- Authors: Reid, Megan Kim
- Date: 2020
- Subjects: Nymphaea mexicana zuccarini -- Biological control -- South Africa , Nymphaeaceae -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/144510 , vital:38352
- Description: Nymphaea mexicana Zuccarini (Nymphaeaceae) is an aquatic plant originating from south-eastern USA that is becoming increasingly invasive in South Africa as other invasive aquatic plants are being managed successfully through biological control. Mechanical and chemical control of aquatic weeds is expensive, damaging to the environment, and only effective in the short term, so biological control is more desirable as a management strategy for N. mexicana. The biological control of invasive alien plants requires that agents are host specific so that non-target risks are mitigated. For success to be achieved, it is important to ensure that the genetic structure of invasive populations is clarified so that agents can be collected from populations in the native range that match genetically to populations in the invasive range. This is especially important in cases where the morphology of invasive alien plants does not reflect genetic differences between populations. A previous study of the genetic structure of the invasive populations of N. mexicana in South Africa suggests the presence of hybrid forms of the plant in South Africa, with only one of these populations matching with samples from the native range. However, the study only used samples from two sites in the native range using amplified fragment length polymorphisms (AFLPs), so it was necessary to conduct further genetic analyses using samples from more sites in the native range. Hence, the first aim of this study was to develop a better understanding of the genetic structure of N. mexicana populations in the native and invaded range. Genetic samples were collected from sites in the native range during field surveys for potential biological control agents, and inter-simple sequence repeats (ISSRs) were used to compare the genetic structure of invasive and native populations of N. mexicana in South Africa. The results from these analyses suggest that seven of the 14 investigated invasive populations of N. mexicana in South Africa are genetically similar to populations in the native range, while the remaining seven populations are likely to be hybrid forms of the plant. This knowledge will be useful to target populations for biological control and highlights the need for further genetic analyses to determine the parentage of these hybrids so that biological control efforts are more likely to be successful. The initiation of a biological control programme requires that a series of steps are taken in order to maximise the likelihood that this form of intervention will be successful. The first few steps include: identification of the target weed and its genetic structure; exploration in the native range for potential biological control agents; and prioritisation of these agents based on factors such as climatic and genetic compatibility, feeding damage, abundance, and likely host range. Hence, the second aim of this study was to conduct surveys for potential biological control agents in the native range of N. mexicana, and to prioritise these agents. Field surveys were conducted between August and October in 2018 at 17 sites in Florida, Louisiana, and Texas, USA. Sites were selected based on climatic similarity of native sites compared to invasive sites by use of MaxEnt modelling. Native N. mexicana plants were searched for natural enemies, and these were prioritised based on feeding damage, abundance, incidence, and observations of field host range. Two species were prioritised: Bagous americanus LeConte (Coleoptera: Curculionidae) and Megamelus toddi Beamer (Hemiptera: Delphacidae). These species will be imported into quarantine facilities at Rhodes University for host specificity tests to be conducted. Understanding the factors that contribute to the successful establishment of biological control agents is important to improve the efficiency and reduce the costs incurred during the initiation of biological control programmes. Acquiring knowledge of the factors that predict the efficacy of biological control agents is similarly important, and these factors are discussed in the last chapter of this study. The challenges of the biological control of hybrids are also considered, and recommendations are made for the control of N. mexicana and other plants in South Africa.
- Full Text:
- Date Issued: 2020
Managing the invasive aquatic plant Sagittaria platyphylla (Engelm.) J.G. Sm(Alismataceae): problems and prospects
- Ndlovu, Mpilonhle Sinothando
- Authors: Ndlovu, Mpilonhle Sinothando
- Date: 2020
- Subjects: Aquatic weeds -- Biological control -- South Africa , Sagittaria latifolia -- Biological control -- South Africa , Noxious weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Listronotus , Insects as biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167121 , vital:41439
- Description: Sagittaria platyphylla (Engelm.) J.G.Sm. (Alismataceae), commonly known as Delta arrowhead, is an invasive aquatic macrophyte native to southern United States of America (USA) that has become a serious weed in freshwater systems in South Africa, New Zealand, Australia, and recently China. In South Africa, the plant was first detected in Krantzkloof Nature Reserve, KwaZulu-Natal Province in 2008, and due to its known impact in other countries, it was listed as a Category 1a invader species under the National Environmental Management: Biodiversity Act 2004 (NEM: BA). This listing required mechanical and chemical control methods to be implemented by the South African National Biodiversity Institute’s (SANBI), Invasive Species Programme (ISP), with the aim of eradicating the weed. Despite the eradication efforts, by 2016, the weed was recognized as one of the country’s top 10 worst and fastest spreading invasive alien plants. Since its introduction in 2008, the plant has spread both within and between sites in South Africa, increasing from one site in 2008 to 72 sites by 2019. Once introduced into lotic systems, the plant spread rapidly downstream, in some cases up to 120km within six years, with an average of 10 km per year. Extirpation over the last ten years was only possible at a limited number of sites. Under the current management approach, the invasion is foreseen to spread to new sites within a 5 km radius of the current populations. Due to the failure of conventional control mechanisms, biological control is currently being considered as a potential control option. Four potential biological control agents are under investigation, but none have been released. Amongst them is the fruit and flower feeding weevil Listronotus appendiculatus Bohm. (Coleoptera: Curculionidae) which showed most potential as a suitable biological control agent. This study demonstrated that L. appendiculatus herbivory negatively influenced the overall fitness of S. platyphylla by reducing the plant’s growth rate and above ground biomass. Listronotus appendiculatus herbivory also reduced the plant’s size and the potential to kill adult plants. Most importantly, L. appendiculatus larval feeding damage significantly reduce viable-germinating seeds, the weed’s primary dispersal mechanism. Therefore, a biological control programme is advised to be integrated within the current management plan.
- Full Text:
- Date Issued: 2020
- Authors: Ndlovu, Mpilonhle Sinothando
- Date: 2020
- Subjects: Aquatic weeds -- Biological control -- South Africa , Sagittaria latifolia -- Biological control -- South Africa , Noxious weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Listronotus , Insects as biological pest control agents
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/167121 , vital:41439
- Description: Sagittaria platyphylla (Engelm.) J.G.Sm. (Alismataceae), commonly known as Delta arrowhead, is an invasive aquatic macrophyte native to southern United States of America (USA) that has become a serious weed in freshwater systems in South Africa, New Zealand, Australia, and recently China. In South Africa, the plant was first detected in Krantzkloof Nature Reserve, KwaZulu-Natal Province in 2008, and due to its known impact in other countries, it was listed as a Category 1a invader species under the National Environmental Management: Biodiversity Act 2004 (NEM: BA). This listing required mechanical and chemical control methods to be implemented by the South African National Biodiversity Institute’s (SANBI), Invasive Species Programme (ISP), with the aim of eradicating the weed. Despite the eradication efforts, by 2016, the weed was recognized as one of the country’s top 10 worst and fastest spreading invasive alien plants. Since its introduction in 2008, the plant has spread both within and between sites in South Africa, increasing from one site in 2008 to 72 sites by 2019. Once introduced into lotic systems, the plant spread rapidly downstream, in some cases up to 120km within six years, with an average of 10 km per year. Extirpation over the last ten years was only possible at a limited number of sites. Under the current management approach, the invasion is foreseen to spread to new sites within a 5 km radius of the current populations. Due to the failure of conventional control mechanisms, biological control is currently being considered as a potential control option. Four potential biological control agents are under investigation, but none have been released. Amongst them is the fruit and flower feeding weevil Listronotus appendiculatus Bohm. (Coleoptera: Curculionidae) which showed most potential as a suitable biological control agent. This study demonstrated that L. appendiculatus herbivory negatively influenced the overall fitness of S. platyphylla by reducing the plant’s growth rate and above ground biomass. Listronotus appendiculatus herbivory also reduced the plant’s size and the potential to kill adult plants. Most importantly, L. appendiculatus larval feeding damage significantly reduce viable-germinating seeds, the weed’s primary dispersal mechanism. Therefore, a biological control programme is advised to be integrated within the current management plan.
- Full Text:
- Date Issued: 2020
Quantifying ecosystem restoration recovery and restoration practice following the biological control of invasive alien macrophytes in Southern Africa
- Authors: Motitsoe, Samuel Nkopane
- Date: 2020
- Subjects: Salvinia molesta , Ceratophyllum demersum , Nymphaea mexicana , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Restoration monitoring (Ecology) -- South Africa , Biolotical invasions -- Environmental aspects
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167519 , vital:41488
- Description: Invasive alien aquatic plants (IAAP) species are known to have deleterious effects on the freshwater ecosystems they invade. This includes both socio-economic and ecologically important ecosystem goods and services. Thus, IAAP species are declared a serious threat, second only to habitat modification for causing a loss of aquatic biodiversity. Three control methods have been widely applied to control IAAP species invasion globally; mechanical, chemical and biological control. Both mechanical and chemical control methods are considered short-term and expensive, whereas biological control methods are regarded an effective and long-term solution for IAAP species control at the landscape level. But, little is known of the ecological recovery following the biological control of IAAP species, with mechanical control known to have had mixed success and chemical control to have non-targeted effects on aquatic ecosystems, causing harm to wildlife and human well-being. Biological control practitioners measure the success of biological control based on: (1) the biological control agents’ establishment and the negative impacts they impose on the targeted weed; and (2) the weeds biomass reduction and an increase in native macrophytes species. Arguably, measures of biological control success have been subjective and variable across the globe. Although some field studies have demonstrated biological control success to have positive socio-economic returns, there is little literature on ecological benefits. Furthermore, there is limited understanding on ecosystem recovery and possible restoration efforts following the biological control IAAP species, as compared to alien weeds in terrestrial and riparian ecosystems. Thus, this thesis aimed to quantify the ecological recovery i.e. aquatic biodiversity, ecosystem processes and trophic interactions following the management of Salvinia molesta in freshwater ecosystems. The research employed a suite of Before-After Control-Impact mesocosm and field studies to investigate the response of aquatic microalgae, macroinvertebrates and their interactions (food web structure and function) during S. molesta infestation and after mechanical and biological control. The mesocosm experiment (Before invasion, During invasion & After control) showed that both aquatic microalgae and macroinvertebrate diversity indices were reliable biological indicators of S. molesta ecological impacts and recovery following control. The restored treatment (100% S. molesta cover + biological control agents), demonstrated complete aquatic microalgae and macroinvertebrate recovery following biological control, similar to the control treatment (open water), where the degraded/impacted treatment (100% S. molesta cover with no biological control agents) showed a drastic decline in aquatic biodiversity and a complete shift in aquatic biota assemblage structure. Thus, the biological control effort by Cyrtobagous salviniae, the biological control agent for S. molesta, assisted in the recovery of aquatic biota following successful biological control. The field study (four field sites, two sites controlled mechanically and two biologically) investigated water quality, aquatic biodiversity and community trophic interactions (aquatic food web) “before and after” S. molesta control. The study showed a drastic decline in aquatic biodiversity (with three sites showing no record of aquatic macroinvertebrates, thus no biotic interactions during infestation) and poor water quality due to the shade-effect (light barrier due to floating S. molesta mats on the water surface) during the “before” S. molesta control phase. However, following both mechanical and biological control (“after” S. molesta control phase), there was a significant shift in abiotic and biotic ecosystem characteristics as compared to the “before” S. molesta control phase. Thus, rapid ecosystem recovery was apparent as a result of aquatic microalgae and macroinvertebrates recolonisation. Sites showed a normal functioning ecosystem where improved water quality, increased biodiversity, productivity and trophic interactions, was indicative of the return of biologically and functionally important species which were lost during the “before” S. molesta phase. Although the clear water state showed positive outcomes at Westlake River, these were short lived when the system was dominated by a cosmopolitan submerged Ceratophyllum demersum, and later replaced by a floating-leaved emergent IAAP Nymphaea mexicana. Each state was responsible for a significant shift in both biotic and abiotic characteristics, affirming macrophyte abilities to influence aquatic environments structure and functions. Furthermore, this event showed a clear example of a secondary invasion. Thus, a holistic IAAP species management strategy is necessary to restore previously invaded ecosystems and prevent subsequent secondary invasion and ecosystem degradation. In conclusion, the S. molesta shade-effect like any other free-floating IAAP species, was identified as the main degrading factor and responsible for water quality reduction, loss of aquatic diversity and shift in aquatic biota assemblage structure. Following S. molesta removal (or shade-effect elimination), there was a positive response to aquatic ecosystem species abundance, richness, diversity and community structure. Therefore, in combination, aquatic biota recolonisation rate and increases in biological and functional diversity were instrumental in the recovery of ecosystem structure and functions, following the control of S. molesta. Echoing existing literature, this thesis recommends: (1) IAAP species management programmes (mechanical and/or biological control) should not only aim to control the weed but also focus on ecosystems recovery and possible restoration goals; (2) biological control should be used where appropriate to combat free-floating IAAP species in freshwater ecosystems, followed by active introduction of native macrophyte propagules since they are limited by anthropogenic activities; and (3) more freshwater case studies are needed to add to our understanding of IAAP species management and restoration effort incorporating long-term monitoring.
- Full Text:
- Date Issued: 2020
- Authors: Motitsoe, Samuel Nkopane
- Date: 2020
- Subjects: Salvinia molesta , Ceratophyllum demersum , Nymphaea mexicana , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Restoration monitoring (Ecology) -- South Africa , Biolotical invasions -- Environmental aspects
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167519 , vital:41488
- Description: Invasive alien aquatic plants (IAAP) species are known to have deleterious effects on the freshwater ecosystems they invade. This includes both socio-economic and ecologically important ecosystem goods and services. Thus, IAAP species are declared a serious threat, second only to habitat modification for causing a loss of aquatic biodiversity. Three control methods have been widely applied to control IAAP species invasion globally; mechanical, chemical and biological control. Both mechanical and chemical control methods are considered short-term and expensive, whereas biological control methods are regarded an effective and long-term solution for IAAP species control at the landscape level. But, little is known of the ecological recovery following the biological control of IAAP species, with mechanical control known to have had mixed success and chemical control to have non-targeted effects on aquatic ecosystems, causing harm to wildlife and human well-being. Biological control practitioners measure the success of biological control based on: (1) the biological control agents’ establishment and the negative impacts they impose on the targeted weed; and (2) the weeds biomass reduction and an increase in native macrophytes species. Arguably, measures of biological control success have been subjective and variable across the globe. Although some field studies have demonstrated biological control success to have positive socio-economic returns, there is little literature on ecological benefits. Furthermore, there is limited understanding on ecosystem recovery and possible restoration efforts following the biological control IAAP species, as compared to alien weeds in terrestrial and riparian ecosystems. Thus, this thesis aimed to quantify the ecological recovery i.e. aquatic biodiversity, ecosystem processes and trophic interactions following the management of Salvinia molesta in freshwater ecosystems. The research employed a suite of Before-After Control-Impact mesocosm and field studies to investigate the response of aquatic microalgae, macroinvertebrates and their interactions (food web structure and function) during S. molesta infestation and after mechanical and biological control. The mesocosm experiment (Before invasion, During invasion & After control) showed that both aquatic microalgae and macroinvertebrate diversity indices were reliable biological indicators of S. molesta ecological impacts and recovery following control. The restored treatment (100% S. molesta cover + biological control agents), demonstrated complete aquatic microalgae and macroinvertebrate recovery following biological control, similar to the control treatment (open water), where the degraded/impacted treatment (100% S. molesta cover with no biological control agents) showed a drastic decline in aquatic biodiversity and a complete shift in aquatic biota assemblage structure. Thus, the biological control effort by Cyrtobagous salviniae, the biological control agent for S. molesta, assisted in the recovery of aquatic biota following successful biological control. The field study (four field sites, two sites controlled mechanically and two biologically) investigated water quality, aquatic biodiversity and community trophic interactions (aquatic food web) “before and after” S. molesta control. The study showed a drastic decline in aquatic biodiversity (with three sites showing no record of aquatic macroinvertebrates, thus no biotic interactions during infestation) and poor water quality due to the shade-effect (light barrier due to floating S. molesta mats on the water surface) during the “before” S. molesta control phase. However, following both mechanical and biological control (“after” S. molesta control phase), there was a significant shift in abiotic and biotic ecosystem characteristics as compared to the “before” S. molesta control phase. Thus, rapid ecosystem recovery was apparent as a result of aquatic microalgae and macroinvertebrates recolonisation. Sites showed a normal functioning ecosystem where improved water quality, increased biodiversity, productivity and trophic interactions, was indicative of the return of biologically and functionally important species which were lost during the “before” S. molesta phase. Although the clear water state showed positive outcomes at Westlake River, these were short lived when the system was dominated by a cosmopolitan submerged Ceratophyllum demersum, and later replaced by a floating-leaved emergent IAAP Nymphaea mexicana. Each state was responsible for a significant shift in both biotic and abiotic characteristics, affirming macrophyte abilities to influence aquatic environments structure and functions. Furthermore, this event showed a clear example of a secondary invasion. Thus, a holistic IAAP species management strategy is necessary to restore previously invaded ecosystems and prevent subsequent secondary invasion and ecosystem degradation. In conclusion, the S. molesta shade-effect like any other free-floating IAAP species, was identified as the main degrading factor and responsible for water quality reduction, loss of aquatic diversity and shift in aquatic biota assemblage structure. Following S. molesta removal (or shade-effect elimination), there was a positive response to aquatic ecosystem species abundance, richness, diversity and community structure. Therefore, in combination, aquatic biota recolonisation rate and increases in biological and functional diversity were instrumental in the recovery of ecosystem structure and functions, following the control of S. molesta. Echoing existing literature, this thesis recommends: (1) IAAP species management programmes (mechanical and/or biological control) should not only aim to control the weed but also focus on ecosystems recovery and possible restoration goals; (2) biological control should be used where appropriate to combat free-floating IAAP species in freshwater ecosystems, followed by active introduction of native macrophyte propagules since they are limited by anthropogenic activities; and (3) more freshwater case studies are needed to add to our understanding of IAAP species management and restoration effort incorporating long-term monitoring.
- Full Text:
- Date Issued: 2020
The invasion ecology of Nymphaea mexicana Zucc. (Mexican Water lily) in South Africa
- Authors: Naidu, Prinavin
- Date: 2019
- Subjects: Nymphaea Mexicana zuccarini , Nymphaea , Nymphaea -- Biological control -- South Africa , Water lilies , Nymphaea -- Ecology -- South Africa , Water lilies -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water lilies -- Ecology -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92920 , vital:30763
- Description: The Mexican water lily, Nymphaea mexicana Zuccarini, is an aquatic perennial, native to southern USA and Mexico, and has been introduced to South Africa via the ornamental plant trade. This species has rapid growth rates and becomes weedy in dams, ponds and rivers. It is currently listed as a NEM:BA category 1b invasive plant in South Africa. One possible management measure for this weed is biological control, but it is a novel target because no biological control programme has been initiated against it anywhere in the world. This study is intended as a baseline for the biological control programme against this plant in South Africa. Assessing the population structure and mode of reproduction of invasive alien plants is an imperative aid to determining if biological control is a suitable management option. Using amplified fragment length polymorphism (AFLP) molecular markers, I compared the amount of genetic variability and differentiation of N. mexicana in its native range (USA), and invasive range (South Africa). Results indicated a large genetic distance between populations in the USA and South Africa, compared to populations within each country. The genetic variability of the invasive populations was higher than that found in the native distribution. This could be due to hybridization in the introduced range, and/or multiple introductions from different source populations. Differences in the morphology of N. mexicana plants in the invasive range and South Africa were also observed which confirm the results of the genetic analyses. I also assessed the reproductive mode of N. mexicana cultivars/hybrids by conducting breeding system experiments and field pollinator studies. Results indicated that the cultivars are sterile, suggesting that the primary mode of reproduction is asexual via fragmentation of tubers. The main pollinators that were found to be associated with the cultivars in South Africa were honeybees, sweat bees, flies and beetles. These insect groups were the same as those that were observed in another study which was conducted on the pollinators associated with the pure N. mexicana in the native range in southern USA. Mechanical and chemical control of N. mexicana and its multiple genotypes have been applied but have not been efficient due to the fast regeneration of shoots, especially in summer. Therefore, these two management options are not long–term solutions and will also be costly due to the widespread occurrence of the hybrids in South Africa. Thus the only cost–effective, environmentally friendly, self–sustainable and long–term management option is biological control. The significant divergence between native and invasive populations of N. mexicana, as well as the possibility of numerous invasive cultivars, may limit future prospects of biological control of this species. However the differences in the root structures between native South African waterlilies, such as N. lotus and N. nouchali, and the introduced waterlilies, such as N. mexicana and its associated hybrids, may play a pivotal role in the success of biological control of the N. mexicana hybrid complex in South Africa. Natural enemies which feed on the hard tuberous roots of N. mexicana and its hybrids, as opposed to the soft bulbs of the native N. nouchali and N. lotus, should be prioritised.
- Full Text:
- Date Issued: 2019
- Authors: Naidu, Prinavin
- Date: 2019
- Subjects: Nymphaea Mexicana zuccarini , Nymphaea , Nymphaea -- Biological control -- South Africa , Water lilies , Nymphaea -- Ecology -- South Africa , Water lilies -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Water lilies -- Ecology -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/92920 , vital:30763
- Description: The Mexican water lily, Nymphaea mexicana Zuccarini, is an aquatic perennial, native to southern USA and Mexico, and has been introduced to South Africa via the ornamental plant trade. This species has rapid growth rates and becomes weedy in dams, ponds and rivers. It is currently listed as a NEM:BA category 1b invasive plant in South Africa. One possible management measure for this weed is biological control, but it is a novel target because no biological control programme has been initiated against it anywhere in the world. This study is intended as a baseline for the biological control programme against this plant in South Africa. Assessing the population structure and mode of reproduction of invasive alien plants is an imperative aid to determining if biological control is a suitable management option. Using amplified fragment length polymorphism (AFLP) molecular markers, I compared the amount of genetic variability and differentiation of N. mexicana in its native range (USA), and invasive range (South Africa). Results indicated a large genetic distance between populations in the USA and South Africa, compared to populations within each country. The genetic variability of the invasive populations was higher than that found in the native distribution. This could be due to hybridization in the introduced range, and/or multiple introductions from different source populations. Differences in the morphology of N. mexicana plants in the invasive range and South Africa were also observed which confirm the results of the genetic analyses. I also assessed the reproductive mode of N. mexicana cultivars/hybrids by conducting breeding system experiments and field pollinator studies. Results indicated that the cultivars are sterile, suggesting that the primary mode of reproduction is asexual via fragmentation of tubers. The main pollinators that were found to be associated with the cultivars in South Africa were honeybees, sweat bees, flies and beetles. These insect groups were the same as those that were observed in another study which was conducted on the pollinators associated with the pure N. mexicana in the native range in southern USA. Mechanical and chemical control of N. mexicana and its multiple genotypes have been applied but have not been efficient due to the fast regeneration of shoots, especially in summer. Therefore, these two management options are not long–term solutions and will also be costly due to the widespread occurrence of the hybrids in South Africa. Thus the only cost–effective, environmentally friendly, self–sustainable and long–term management option is biological control. The significant divergence between native and invasive populations of N. mexicana, as well as the possibility of numerous invasive cultivars, may limit future prospects of biological control of this species. However the differences in the root structures between native South African waterlilies, such as N. lotus and N. nouchali, and the introduced waterlilies, such as N. mexicana and its associated hybrids, may play a pivotal role in the success of biological control of the N. mexicana hybrid complex in South Africa. Natural enemies which feed on the hard tuberous roots of N. mexicana and its hybrids, as opposed to the soft bulbs of the native N. nouchali and N. lotus, should be prioritised.
- Full Text:
- Date Issued: 2019
The performance and preference of a specialist herbivore, Catorhintha schaffneri (Coreidae), on its polytypic host plant, Pereskia aculeata (Cactaceae)
- Authors: Egbon, Ikponmwosa Nathaniel
- Date: 2019
- Subjects: Insects and biological pest control agents -- South Africa , Pereskia -- Biological control -- South Africa , Cactus -- Biological control -- South Africa , Coreida-- South Africa , Invasive plants -- Biological control -- South Africa , Catorhintha schaffneri
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/68250 , vital:29223
- Description: Plant species moved beyond their natural ranges may be liberated into enemy-free spaces, where they increase resource allocation to fitness, rather than defence against natural enemies, and become invasive as suggested by the Evolution of Increased Competitive Ability (EICA) Hypothesis. Several cacti are notable invaders and are targeted for biological control. The leafy cactus, Pereskia aculeata Miller, introduced into South Africa from South America, has become a target for biological control after becoming invasive. The absence of natural enemies of P. aculeata in the introduced range may be the reason for its invasiveness. This thesis seeks to investigate the role of the evolution of increased competitive ability (enemy release) as the probable driver of P. aculeata’s success, and ascertain how the plant’s intraspecific variation influences the impact, fitness of, and preference by its biological control agent, Catorhintha schaffneri Brailovsky and Garcia (Coreidae), in South Africa. Enemy release and evolution of traits in P. aculeata were examined by quantifying plant growth parameters of fifteen genotypes of P. aculeata from both the native and invaded distribution of the plant. Ten genotypes of P. aculeata were used in testing the effect of agent herbivory (impact and damage) under similar conditions. These studies indicated that most invaded-range genotypes were more vigorous than the native genotypes. Rapid growth may account for the quick access of invasive genotypes of P. aculeata to tree canopies. Catorhintha schaffneri damage varied between genotypes but differences in the damage and impact from the agent could not be explained by whether the plant originated in the introduced or native distribution. In sum, while the growth of the invasive genotypes largely conforms to the EICA hypothesis, the impact of C. schaffneri did not support the hypothesis. The influence of host variation in P. aculeata on the fitness of C. schaffneri within the context of local adaptation to plant genotypes from different localities was tested using agent survival, stage-specific and total developmental time, and the extent of damage to ten host genotypes. Maw’s Host Suitability Index (HIS) and Dobie’s Susceptibility Index (DSI) showed the preference by and performance of C. schaffneri on the different genotypes of the plant. Catorhintha schaffneri survived to the adult stage on 70% of genotypes tested. Evidence consistent with the assumption that C. schaffneri would be fitter on the native genotypes than the invasive genotypes due to local adaptation was not found. In addition, there was no evidence in support of fitter agents on the invasive genotypes than on the native genotypes as proposed by EICA hypothesis. Catorhintha schaffneri developed equally well on the invasive genotypes of P. aculeata as on the native genotypes. To establish whether host variation would affect diet selection by C. schaffneri, both nymphs and adults were examined in paired-choice and multiple-choice trials. The nymphs and adults chose their hosts regardless of host genotype differences. The agent may be good at selecting good succulent shoots from bad shoots, but is incapable of distinguishing a good host genotype from a poorer one. This thesis shows, therefore, that P. aculeata and its array of genotypes in South Africa could be effectively controlled by C. schaffneri, as it has the potential to suitably utilise and impact the different genotypes of the weed in South Africa with neither any demonstrable preference nor local adaptation for the native genotypes. Consequently, the use of C. schaffneri, as a biological control agent in the weed biological control programme of P. aculeata remains promising, as the agent is insensitive to the intraspecific variation of the invasive host plants.
- Full Text:
- Date Issued: 2019
- Authors: Egbon, Ikponmwosa Nathaniel
- Date: 2019
- Subjects: Insects and biological pest control agents -- South Africa , Pereskia -- Biological control -- South Africa , Cactus -- Biological control -- South Africa , Coreida-- South Africa , Invasive plants -- Biological control -- South Africa , Catorhintha schaffneri
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/68250 , vital:29223
- Description: Plant species moved beyond their natural ranges may be liberated into enemy-free spaces, where they increase resource allocation to fitness, rather than defence against natural enemies, and become invasive as suggested by the Evolution of Increased Competitive Ability (EICA) Hypothesis. Several cacti are notable invaders and are targeted for biological control. The leafy cactus, Pereskia aculeata Miller, introduced into South Africa from South America, has become a target for biological control after becoming invasive. The absence of natural enemies of P. aculeata in the introduced range may be the reason for its invasiveness. This thesis seeks to investigate the role of the evolution of increased competitive ability (enemy release) as the probable driver of P. aculeata’s success, and ascertain how the plant’s intraspecific variation influences the impact, fitness of, and preference by its biological control agent, Catorhintha schaffneri Brailovsky and Garcia (Coreidae), in South Africa. Enemy release and evolution of traits in P. aculeata were examined by quantifying plant growth parameters of fifteen genotypes of P. aculeata from both the native and invaded distribution of the plant. Ten genotypes of P. aculeata were used in testing the effect of agent herbivory (impact and damage) under similar conditions. These studies indicated that most invaded-range genotypes were more vigorous than the native genotypes. Rapid growth may account for the quick access of invasive genotypes of P. aculeata to tree canopies. Catorhintha schaffneri damage varied between genotypes but differences in the damage and impact from the agent could not be explained by whether the plant originated in the introduced or native distribution. In sum, while the growth of the invasive genotypes largely conforms to the EICA hypothesis, the impact of C. schaffneri did not support the hypothesis. The influence of host variation in P. aculeata on the fitness of C. schaffneri within the context of local adaptation to plant genotypes from different localities was tested using agent survival, stage-specific and total developmental time, and the extent of damage to ten host genotypes. Maw’s Host Suitability Index (HIS) and Dobie’s Susceptibility Index (DSI) showed the preference by and performance of C. schaffneri on the different genotypes of the plant. Catorhintha schaffneri survived to the adult stage on 70% of genotypes tested. Evidence consistent with the assumption that C. schaffneri would be fitter on the native genotypes than the invasive genotypes due to local adaptation was not found. In addition, there was no evidence in support of fitter agents on the invasive genotypes than on the native genotypes as proposed by EICA hypothesis. Catorhintha schaffneri developed equally well on the invasive genotypes of P. aculeata as on the native genotypes. To establish whether host variation would affect diet selection by C. schaffneri, both nymphs and adults were examined in paired-choice and multiple-choice trials. The nymphs and adults chose their hosts regardless of host genotype differences. The agent may be good at selecting good succulent shoots from bad shoots, but is incapable of distinguishing a good host genotype from a poorer one. This thesis shows, therefore, that P. aculeata and its array of genotypes in South Africa could be effectively controlled by C. schaffneri, as it has the potential to suitably utilise and impact the different genotypes of the weed in South Africa with neither any demonstrable preference nor local adaptation for the native genotypes. Consequently, the use of C. schaffneri, as a biological control agent in the weed biological control programme of P. aculeata remains promising, as the agent is insensitive to the intraspecific variation of the invasive host plants.
- Full Text:
- Date Issued: 2019
Evaluation of a plant-herbivore system in determining potential efficacy of a candidate biological control agent, cornops aquaticum for water hyacinth, eichhornia crassipes
- Authors: Bownes, Angela
- Date: 2009
- Subjects: Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Grasshoppers , Biological pest control agents -- South Africa , Weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5687 , http://hdl.handle.net/10962/d1005373
- Description: Water hyacinth, Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), a freefloating aquatic macrophyte of Neotropical origin, was introduced into South Africa as an ornamental aquarium plant in the early 1900’s. By the 1970’s it had reached pest proportions in dams and rivers around the country. Due to the sustainability, cost efficiency and low environmental risk associated with biological control, this has been a widely used method in an attempt to reduce infestations to below the threshold where they cause economic and ecological damage. To date, five arthropod and one pathogen biocontrol agents have been introduced for the control of water hyacinth but their impact has been variable. It is believed that their efficacy is hampered by the presence of highly eutrophic systems in South Africa in which plant growth is prolific and the negative effects of herbivory are therefore mitigated. It is for these reasons that new, potentially more damaging biocontrol agents are being considered for release. The water hyacinth grasshopper, Cornops aquaticum Brüner (Orthoptera: Acrididae), which is native to South America and Mexico, was brought into quarantine in Pretoria, South Africa in 1995. Although the grasshopper was identified as one of the most damaging insects associated with water hyacinth in its native range, it has not been considered as a biocontrol agent for water hyacinth anywhere else in the world. After extensive host-range testing which revealed it to be safe for release, a release permit for this candidate agent was issued in 2007. However, host specificity testing is no longer considered to be the only important component of pre-release screening of candidate biocontrol agents. Investigating biological and ecological aspects of the plant-herbivore system that will assist in determination of potential establishment, efficacy and the ability to build up good populations in the recipient environment are some of the important factors. This thesis is a pre-release evaluation of C. aquaticum to determine whether it is sufficiently damaging to water hyacinth to warrant its release. It investigated interactions between the grasshopper and water hyacinth under a range of nutrient conditions found in South African water bodies as well as the impact of the grasshopper on the competitive performance of water hyacinth. Both plant growth rates and the response of water hyacinth to herbivory by the grasshopper were influenced by nutrient availability to the plants. The ability of water hyacinth to compensate for loss of tissue through herbivory was greater under eutrophic nutrient conditions. However, a negative linear relationship was found between grasshopper biomass and water hyacinth performance parameters such as biomass accumulation and leaf production, even under eutrophic conditions. Water hyacinth’s compensatory ability in terms of its potential to mitigate to detrimental effects of insect feeding was dependent on the amount of damage caused by herbivory by the grasshopper. Plant biomass and the competitive ability of water hyacinth in relation to another freefloating aquatic weed species were reduced by C. aquaticum under eutrophic nutrient conditions, in a short space of time. It was also found that grasshopper feeding and characteristics related to their population dynamics such as fecundity and survival were significantly influenced by water nutrient availability and that environmental nutrient availability will influence the control potential of this species should it be released in South Africa. Cornops aquaticum shows promise as a biocontrol agent for water hyacinth but additional factors that were not investigated in this study such as compatibility with the South African climate and the current water hyacinth biocontrol agents need to be combined with these data to make a decision on its release. Possible management options for this species if it is to be introduced into South Africa are discussed.
- Full Text:
- Date Issued: 2009
- Authors: Bownes, Angela
- Date: 2009
- Subjects: Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Grasshoppers , Biological pest control agents -- South Africa , Weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5687 , http://hdl.handle.net/10962/d1005373
- Description: Water hyacinth, Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), a freefloating aquatic macrophyte of Neotropical origin, was introduced into South Africa as an ornamental aquarium plant in the early 1900’s. By the 1970’s it had reached pest proportions in dams and rivers around the country. Due to the sustainability, cost efficiency and low environmental risk associated with biological control, this has been a widely used method in an attempt to reduce infestations to below the threshold where they cause economic and ecological damage. To date, five arthropod and one pathogen biocontrol agents have been introduced for the control of water hyacinth but their impact has been variable. It is believed that their efficacy is hampered by the presence of highly eutrophic systems in South Africa in which plant growth is prolific and the negative effects of herbivory are therefore mitigated. It is for these reasons that new, potentially more damaging biocontrol agents are being considered for release. The water hyacinth grasshopper, Cornops aquaticum Brüner (Orthoptera: Acrididae), which is native to South America and Mexico, was brought into quarantine in Pretoria, South Africa in 1995. Although the grasshopper was identified as one of the most damaging insects associated with water hyacinth in its native range, it has not been considered as a biocontrol agent for water hyacinth anywhere else in the world. After extensive host-range testing which revealed it to be safe for release, a release permit for this candidate agent was issued in 2007. However, host specificity testing is no longer considered to be the only important component of pre-release screening of candidate biocontrol agents. Investigating biological and ecological aspects of the plant-herbivore system that will assist in determination of potential establishment, efficacy and the ability to build up good populations in the recipient environment are some of the important factors. This thesis is a pre-release evaluation of C. aquaticum to determine whether it is sufficiently damaging to water hyacinth to warrant its release. It investigated interactions between the grasshopper and water hyacinth under a range of nutrient conditions found in South African water bodies as well as the impact of the grasshopper on the competitive performance of water hyacinth. Both plant growth rates and the response of water hyacinth to herbivory by the grasshopper were influenced by nutrient availability to the plants. The ability of water hyacinth to compensate for loss of tissue through herbivory was greater under eutrophic nutrient conditions. However, a negative linear relationship was found between grasshopper biomass and water hyacinth performance parameters such as biomass accumulation and leaf production, even under eutrophic conditions. Water hyacinth’s compensatory ability in terms of its potential to mitigate to detrimental effects of insect feeding was dependent on the amount of damage caused by herbivory by the grasshopper. Plant biomass and the competitive ability of water hyacinth in relation to another freefloating aquatic weed species were reduced by C. aquaticum under eutrophic nutrient conditions, in a short space of time. It was also found that grasshopper feeding and characteristics related to their population dynamics such as fecundity and survival were significantly influenced by water nutrient availability and that environmental nutrient availability will influence the control potential of this species should it be released in South Africa. Cornops aquaticum shows promise as a biocontrol agent for water hyacinth but additional factors that were not investigated in this study such as compatibility with the South African climate and the current water hyacinth biocontrol agents need to be combined with these data to make a decision on its release. Possible management options for this species if it is to be introduced into South Africa are discussed.
- Full Text:
- Date Issued: 2009
Laboratory and field host utilization by established biological control agents of Lantana camara L. in South Africa
- Authors: Heystek, Fritz
- Date: 2006
- Subjects: Lantana camara -- South Africa , Biological pest control agents -- South Africa , Weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5725 , http://hdl.handle.net/10962/d1005411 , Lantana camara -- South Africa , Biological pest control agents -- South Africa , Weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Description: Varieties of Lantana camara (lantana) have been introduced into many countries of the world as ornamental plants and have become invasive weeds in many countries including South Africa. In South Africa, it mostly invades the sub-tropical eastern and northern range. Mechanical and chemical control options are expensive and ineffective. A biocontrol programme was initiated in South Africa in 1961. To date, 22 insect species, and a fungus have been introduced, of these 10, and the fungus have established. Three indigenous lepidopteran species and an exotic generalist pest mealybug are also associated with the weed. The variable success of some of the agents released on L. camara worldwide has been ascribed to a few factors. One important aspect is the large range of varieties encountered in the field. It is therefore essential to be able to predict the possible establishment and impact of agents on many varieties. Laboratory trials on five of the established agents showed clear varietal preferences. In the field, most of the biocontrol agents had limited geographic ranges, linked to altitudinal conditions, as higher populations were recorded at low lying warm summer rainfall areas. A pink and orange flower corolla lobe and throat colour combination and plants with few to medium leaf hairs were most abundant in South Africa. Most of the agent species had individual preferences towards different flower colour combinations, as the agents built up different population levels on varieties in the field, within the suitable geographic region for the insect species. Eight agents preferred smooth leaved varieties, while three preferred hairy leaves, and three had no specific preference to leaf hairiness. Varietal preferences thus did play a significant role in agent populations and accompanied impact achieved in the field. New candidate agents need to be proven specific under quarantine conditions and the results extrapolated to predict specificity in the field, while avoiding potential non-target effects. Many authors have questioned the validity of laboratory host specificity trials. The conventional wisdom is that insects portray a far wider host range in the laboratory than what they would do in the field. In other words, laboratory studies measure the physiological host range of an agent and are conservative and usually don’t reflect the ecological host range of agents in the field. To avoid unnecessary rejections of biocontrol agents, this study has made a retrospective study of the host specificity of agents established in the field. Their laboratory and field host ranges were compared and it was found that virtually all the agents reflect similar or less non-target effects in the field than predicted during multiple choice trials. Of the 14 agents, only one introduced species, Teleonemia scrupulosa, and the indigenous species, Hypena laceratalis and Aristea onychote were able to sustain populations on non-target species in the field in the absence of L. camara. Insect populations on non-target species were much reduced compared to that on L. camara. Furthermore non-target effects were only recorded on plant species closely related to the target weed. The multiple choice trials therefore predict field non-target effects accurately. Predictions of non-target effects of candidate agents can therefore be accurately predicted by laboratory studies, in terms of species likely to be affected and to what extent. One field that need further study though is the impact of non-target effects, especially on Lippia species by L. camara biocontrol agents.
- Full Text:
- Date Issued: 2006
- Authors: Heystek, Fritz
- Date: 2006
- Subjects: Lantana camara -- South Africa , Biological pest control agents -- South Africa , Weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5725 , http://hdl.handle.net/10962/d1005411 , Lantana camara -- South Africa , Biological pest control agents -- South Africa , Weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Description: Varieties of Lantana camara (lantana) have been introduced into many countries of the world as ornamental plants and have become invasive weeds in many countries including South Africa. In South Africa, it mostly invades the sub-tropical eastern and northern range. Mechanical and chemical control options are expensive and ineffective. A biocontrol programme was initiated in South Africa in 1961. To date, 22 insect species, and a fungus have been introduced, of these 10, and the fungus have established. Three indigenous lepidopteran species and an exotic generalist pest mealybug are also associated with the weed. The variable success of some of the agents released on L. camara worldwide has been ascribed to a few factors. One important aspect is the large range of varieties encountered in the field. It is therefore essential to be able to predict the possible establishment and impact of agents on many varieties. Laboratory trials on five of the established agents showed clear varietal preferences. In the field, most of the biocontrol agents had limited geographic ranges, linked to altitudinal conditions, as higher populations were recorded at low lying warm summer rainfall areas. A pink and orange flower corolla lobe and throat colour combination and plants with few to medium leaf hairs were most abundant in South Africa. Most of the agent species had individual preferences towards different flower colour combinations, as the agents built up different population levels on varieties in the field, within the suitable geographic region for the insect species. Eight agents preferred smooth leaved varieties, while three preferred hairy leaves, and three had no specific preference to leaf hairiness. Varietal preferences thus did play a significant role in agent populations and accompanied impact achieved in the field. New candidate agents need to be proven specific under quarantine conditions and the results extrapolated to predict specificity in the field, while avoiding potential non-target effects. Many authors have questioned the validity of laboratory host specificity trials. The conventional wisdom is that insects portray a far wider host range in the laboratory than what they would do in the field. In other words, laboratory studies measure the physiological host range of an agent and are conservative and usually don’t reflect the ecological host range of agents in the field. To avoid unnecessary rejections of biocontrol agents, this study has made a retrospective study of the host specificity of agents established in the field. Their laboratory and field host ranges were compared and it was found that virtually all the agents reflect similar or less non-target effects in the field than predicted during multiple choice trials. Of the 14 agents, only one introduced species, Teleonemia scrupulosa, and the indigenous species, Hypena laceratalis and Aristea onychote were able to sustain populations on non-target species in the field in the absence of L. camara. Insect populations on non-target species were much reduced compared to that on L. camara. Furthermore non-target effects were only recorded on plant species closely related to the target weed. The multiple choice trials therefore predict field non-target effects accurately. Predictions of non-target effects of candidate agents can therefore be accurately predicted by laboratory studies, in terms of species likely to be affected and to what extent. One field that need further study though is the impact of non-target effects, especially on Lippia species by L. camara biocontrol agents.
- Full Text:
- Date Issued: 2006
The evaluation of Phenrica sp.2 (Coleoptera: Chrysomelidae: Alticinae), as a possible biological control agent for Madeira vine, Anredera cordifolia (Ten.) Steenis in South Africa
- Authors: Van der Westhuizen, Liamé
- Date: 2006
- Subjects: Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Invasive plants -- Biological control -- South Africa , Chrysomelidae , Beetles , Flea beetles , Anredera cordifolia -- Biological control
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5689 , http://hdl.handle.net/10962/d1005375 , Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Invasive plants -- Biological control -- South Africa , Chrysomelidae , Beetles , Flea beetles , Anredera cordifolia -- Biological control
- Description: Anredera cordifolia (Basellaceae), Madeira vine, is a perennial, semi- succulent climber native from Paraguay to southern Brazil and northern Argentina. It has a history of weediness and difficulty of control once established. In South Africa Madeira vine has a wide range and distribution with altitudes ranging from 10-1800m above sea level. Described as a transformer species, its sheer weight is capable of breaking branches off trees, causing the potential collapse of forest canopies. Chemical and mechanical control methods are expensive, labour intensive and may provide only temporary relief. A biological control programme was therefore initiated in 2003. Cf Phenrica sp. 2 (Coleoptera: Chrysomelidae: Alticinae), was field collected from A. cordifolia in Brazil, SSW of Cascavel in the Paraná Province during a survey in November 2003. Eggs are laid in groups of 16 with the average fertility rate being 89%. After going though three larval instars, the larvae pupate in the soil with the adults eclosing after a period of 17 days. The total developmental time for a generation from egg to egg ranges between 7-8 weeks. Biological traits that favour the flea beetle as a possible biological control agent include long-lived adults (up to 5 months) and multiple generations during the summer period. Both adults and larvae feed extensively on leaves and stems and although developmental rates will slow down during the winter period, no indication of a definite diapause was found under the prevailing laboratory conditions. After completing the larval no-choice trials with twenty-six plant species from 14 plant families Phenrica sp. 2 proved to be adequately host specific, as larval development was only supported by 3 Basellaceae species (including the control A. cordifolia) and one Portulacaceae species. All of these are introduced species in South Africa. The only indigenous Basella species could not be tested as it has a very marginal distribution, and because it’s inconspicuous nature, it is seldom seen or collected. Adult multi-choice trials were restricted to species that could sustain larval development to give some indication of the acceptability of these species for adult feeding and oviposition. Although adult feeding was initially concentrated on B. alba, the oviposition preference was clear-cut as females only oviposited on A. cordifolia. In order to quantify the impact of Phenrica sp. 2 on plant biomass and to assess the incidence and intensity of foliar damage, a pair of adults was confined to the host plant, for 2 generations, with different levels of larval densities. The results indicated that the host plant, due to both larval and adult feeding, suffered leaf losses of up to 55%. Anredera cordifolia was however still capable of enlarging the root mass despite suffering huge leaf losses. This would imply that A. cordifolia has an effective re-growth capacity and it will only be vulnerable to attack of the storage organs that enable re-growth, or to repeated attack of other plant parts through which reserves are exhausted. Unfortunately the period of exposure (24 days) was too short to prove that Phenrica sp. 2 impacts on the below ground dry mass, but should the plant be completely defoliated, as was observed in the field, the host plant would be forced to deplete stored resources. Phenrica sp.2 has shown to be very host specific and although A.cordifoia loses its leaves during the winter period in most provinces in South Africa, the adults are long-lived and should be able to survive the leafless periods. Further more the relatively short life cycle, high fecundity and 3 generations per year should theoretically insure a strong population build-up that would improve the chances of establishment in the field. All indications are that Phenrica sp. 2 is an agent well worth considering for the biological control of A. cordifolia.
- Full Text:
- Date Issued: 2006
- Authors: Van der Westhuizen, Liamé
- Date: 2006
- Subjects: Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Invasive plants -- Biological control -- South Africa , Chrysomelidae , Beetles , Flea beetles , Anredera cordifolia -- Biological control
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5689 , http://hdl.handle.net/10962/d1005375 , Weeds -- Biological control -- South Africa , Biological pest control agents -- South Africa , Invasive plants -- Biological control -- South Africa , Chrysomelidae , Beetles , Flea beetles , Anredera cordifolia -- Biological control
- Description: Anredera cordifolia (Basellaceae), Madeira vine, is a perennial, semi- succulent climber native from Paraguay to southern Brazil and northern Argentina. It has a history of weediness and difficulty of control once established. In South Africa Madeira vine has a wide range and distribution with altitudes ranging from 10-1800m above sea level. Described as a transformer species, its sheer weight is capable of breaking branches off trees, causing the potential collapse of forest canopies. Chemical and mechanical control methods are expensive, labour intensive and may provide only temporary relief. A biological control programme was therefore initiated in 2003. Cf Phenrica sp. 2 (Coleoptera: Chrysomelidae: Alticinae), was field collected from A. cordifolia in Brazil, SSW of Cascavel in the Paraná Province during a survey in November 2003. Eggs are laid in groups of 16 with the average fertility rate being 89%. After going though three larval instars, the larvae pupate in the soil with the adults eclosing after a period of 17 days. The total developmental time for a generation from egg to egg ranges between 7-8 weeks. Biological traits that favour the flea beetle as a possible biological control agent include long-lived adults (up to 5 months) and multiple generations during the summer period. Both adults and larvae feed extensively on leaves and stems and although developmental rates will slow down during the winter period, no indication of a definite diapause was found under the prevailing laboratory conditions. After completing the larval no-choice trials with twenty-six plant species from 14 plant families Phenrica sp. 2 proved to be adequately host specific, as larval development was only supported by 3 Basellaceae species (including the control A. cordifolia) and one Portulacaceae species. All of these are introduced species in South Africa. The only indigenous Basella species could not be tested as it has a very marginal distribution, and because it’s inconspicuous nature, it is seldom seen or collected. Adult multi-choice trials were restricted to species that could sustain larval development to give some indication of the acceptability of these species for adult feeding and oviposition. Although adult feeding was initially concentrated on B. alba, the oviposition preference was clear-cut as females only oviposited on A. cordifolia. In order to quantify the impact of Phenrica sp. 2 on plant biomass and to assess the incidence and intensity of foliar damage, a pair of adults was confined to the host plant, for 2 generations, with different levels of larval densities. The results indicated that the host plant, due to both larval and adult feeding, suffered leaf losses of up to 55%. Anredera cordifolia was however still capable of enlarging the root mass despite suffering huge leaf losses. This would imply that A. cordifolia has an effective re-growth capacity and it will only be vulnerable to attack of the storage organs that enable re-growth, or to repeated attack of other plant parts through which reserves are exhausted. Unfortunately the period of exposure (24 days) was too short to prove that Phenrica sp. 2 impacts on the below ground dry mass, but should the plant be completely defoliated, as was observed in the field, the host plant would be forced to deplete stored resources. Phenrica sp.2 has shown to be very host specific and although A.cordifoia loses its leaves during the winter period in most provinces in South Africa, the adults are long-lived and should be able to survive the leafless periods. Further more the relatively short life cycle, high fecundity and 3 generations per year should theoretically insure a strong population build-up that would improve the chances of establishment in the field. All indications are that Phenrica sp. 2 is an agent well worth considering for the biological control of A. cordifolia.
- Full Text:
- Date Issued: 2006
- «
- ‹
- 1
- ›
- »