An investigation into the fire regimes of the upper Tsitsa River catchment
- Authors: Snyman, Gareth
- Date: 2020
- Subjects: Prescribed burning -- Environmental aspects -- South Africa , Fire ecology -- South Africa , Tsitsa River catchment (South Africa) , Soil erosion -- South Africa , Grasslands -- Management -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/145256 , vital:38422
- Description: South African grasslands are rich in flora and fauna and are a dominant vegetation cover in many of the water catchment areas, while providing a multitude of services to local communities and the environment. Fires have been the primary tool used to manage grasslands for livestock production for many years. However, there is debate about how they impact and alter landscapes and there are two schools of thought throughout literature. One argument is that fires are detrimental to landscapes; altering hydrological processes by causing excess soil erosion and changing soil properties. The other opinion is that fires are beneficial to ecosystems; maintaining vegetation structure, preventing bush encroachment, cycling nutrients and allowing for new plant growth. This study focused on the effects of fire regimes on soil properties in order to better understand the role that fire plays in geomorphic processes in the upper Tsitsa River catchment. The catchment falls under two land management types- commercial and communal, with the latter being severely degraded. Fire regimes were determined using a combination of Landsat and MODIS remotely sensed data and testing was carried out on soils exposed to different Fire Return Intervals (FRI). It was found that soils that were exposed to a high fire frequency (1-2-year FRI) exhibited a significantly higher degree of water repellency (p< 0.001) and surface hardness (p< 0.001) than soils that were exposed to a low fire frequency (3-4 year FRI), which indicates increased erosion potential. However, whilst a higher fire frequency resulted in altered soil characteristics, it contributed to landscape degradation as suggested in the literature, and soils are able to return to their previous state in over a short period of time. Further investigation into factors affecting fire regimes found that geology influenced vegetation type, resulting in differences in biomass in the two land management areas. The commercially managed land supported a high biomass, which resulted in a more natural fire regime with frequent fires, whilst the communally managed land supported less biomass. Smaller fuel loads and increased landscape fragmentation through overgrazing and road networks resulted in an altered fire regime with less frequent fires. Although the communally managed land has an altered fire regime, this research suggests that fires are not influencing the severe degradation present in these areas, and this is rather a function of geology and mismanagement of land. Whilst fire and grazing management plans can be implemented to alter the modified fire regime in the communal areas back to its natural state, this would take a long time and an increase in fires would pose a threat to surrounding communities. Overall the fire regimes in the upper Tsitsa River catchment are being altered by human influence and land management type, and whilst fire frequency is negatively altering soil properties, these soils can return to their natural state. The severe land degradation present in the communally managed areas are not a function of fire frequency and rather of geology and land management.
- Full Text:
- Date Issued: 2020
- Authors: Snyman, Gareth
- Date: 2020
- Subjects: Prescribed burning -- Environmental aspects -- South Africa , Fire ecology -- South Africa , Tsitsa River catchment (South Africa) , Soil erosion -- South Africa , Grasslands -- Management -- South Africa
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/145256 , vital:38422
- Description: South African grasslands are rich in flora and fauna and are a dominant vegetation cover in many of the water catchment areas, while providing a multitude of services to local communities and the environment. Fires have been the primary tool used to manage grasslands for livestock production for many years. However, there is debate about how they impact and alter landscapes and there are two schools of thought throughout literature. One argument is that fires are detrimental to landscapes; altering hydrological processes by causing excess soil erosion and changing soil properties. The other opinion is that fires are beneficial to ecosystems; maintaining vegetation structure, preventing bush encroachment, cycling nutrients and allowing for new plant growth. This study focused on the effects of fire regimes on soil properties in order to better understand the role that fire plays in geomorphic processes in the upper Tsitsa River catchment. The catchment falls under two land management types- commercial and communal, with the latter being severely degraded. Fire regimes were determined using a combination of Landsat and MODIS remotely sensed data and testing was carried out on soils exposed to different Fire Return Intervals (FRI). It was found that soils that were exposed to a high fire frequency (1-2-year FRI) exhibited a significantly higher degree of water repellency (p< 0.001) and surface hardness (p< 0.001) than soils that were exposed to a low fire frequency (3-4 year FRI), which indicates increased erosion potential. However, whilst a higher fire frequency resulted in altered soil characteristics, it contributed to landscape degradation as suggested in the literature, and soils are able to return to their previous state in over a short period of time. Further investigation into factors affecting fire regimes found that geology influenced vegetation type, resulting in differences in biomass in the two land management areas. The commercially managed land supported a high biomass, which resulted in a more natural fire regime with frequent fires, whilst the communally managed land supported less biomass. Smaller fuel loads and increased landscape fragmentation through overgrazing and road networks resulted in an altered fire regime with less frequent fires. Although the communally managed land has an altered fire regime, this research suggests that fires are not influencing the severe degradation present in these areas, and this is rather a function of geology and mismanagement of land. Whilst fire and grazing management plans can be implemented to alter the modified fire regime in the communal areas back to its natural state, this would take a long time and an increase in fires would pose a threat to surrounding communities. Overall the fire regimes in the upper Tsitsa River catchment are being altered by human influence and land management type, and whilst fire frequency is negatively altering soil properties, these soils can return to their natural state. The severe land degradation present in the communally managed areas are not a function of fire frequency and rather of geology and land management.
- Full Text:
- Date Issued: 2020
Fire regimes in eastern coastal fynbos: drivers, ecology and management
- Authors: Kraaij, Tineke
- Date: 2012
- Subjects: Forest fires -- South Africa , Climatic changes , Prescribed burning , Fire ecology -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10607 , http://hdl.handle.net/10948/d1008047 , Forest fires -- South Africa , Climatic changes , Prescribed burning , Fire ecology -- South Africa
- Description: Conventional knowledge of fynbos fire ecology is based on the summer-autumn fire regimes of the western Cape Floral Kingdom (CFK) where the climate is Mediterranean. However, the climate in the eastern coastal-CFK is milder and rainfall occurs year-round, with presumed effects on fire regimes. The Garden Route National Park (GRNP) has recently been established in the region, in a landscape where indigenous forests, fire-prone fynbos shrublands and fire-sensitive plantations of invasive alien trees are interspersed. The park faces considerable challenges related to the management of fire, including significant pressure from the adjacent plantation industry to reduce wildfire hazard by burning fynbos at short intervals, and high levels of invasion by alien trees (largely Pinus species originating from plantations). This study sought to improve understanding of fire regimes in eastern coastal fynbos shrublands, and to provide guidelines for ecologically sound management of fire in the area. My approach entailed (i) an assessment of the context within which fire management was practiced during the past century; (ii) characterisation of the recent fire history and fire regime (1900–2010); (iii) characterisation of the seasonality of fire weather and lightning; (iv) estimation of minimum fire return intervals (FRIs) from juvenile periods and post-fire recruitment success of overstorey proteoids (non-sprouting, slow-maturing, serotinous Proteaceae); and (v) determination of the ecologically appropriate fire season from post-fire recruitment seasonality of proteoids. I established that historically, plantation protection enjoyed priority over fynbos conservation in the area that is now the GRNP. Fynbos close to plantations has most likely been compromised by frequent and low-intensity burning in the past, as well as by invasion by alien trees. In terms of area burnt (1900–2010), natural (lightning-ignited) fires dominated the fire regime, particularly in the east, whereas prescribed burning was relatively unimportant. Typical fire return intervals (FRIs; 8–26 years; 1980–2010) were comparable to those in other fynbos protected areas and appeared to be shorter in the eastern Tsitsikamma than in the western Outeniqua halves of the study area. Proteaceae juvenile periods (4–9 years) and post-fire recruitment success (following fires in ≥7 year-old vegetation) suggested that for biodiversity conservation purposes, FRIs should be no less than nine years in moist, productive fynbos. Increases in the total area burnt annually (since 1980) were correlated with long-term increases in average fire danger weather, suggesting that fire regime changes may be related to global change. Collectively, findings on the seasonality of actual fires and the seasonality of fire danger weather, lightning, and post-fire proteoid recruitment suggested that fires in eastern coastal fynbos are not limited to any particular season, and for this reason managers do not need to be concerned if fires occur in any season. The ecological requirements for higher fire intensity may nonetheless be constrained by a need for safety. I articulated these findings into ecological thresholds pertaining to the different elements of the fire regime in eastern coastal fynbos, to guide adaptive management of fire in the Garden Route National Park. I also recommended a fire management strategy for the park to address the aforementioned operational considerations within the constraints posed by ecological thresholds. Finally, I highlighted further research and monitoring needs.
- Full Text:
- Date Issued: 2012
- Authors: Kraaij, Tineke
- Date: 2012
- Subjects: Forest fires -- South Africa , Climatic changes , Prescribed burning , Fire ecology -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10607 , http://hdl.handle.net/10948/d1008047 , Forest fires -- South Africa , Climatic changes , Prescribed burning , Fire ecology -- South Africa
- Description: Conventional knowledge of fynbos fire ecology is based on the summer-autumn fire regimes of the western Cape Floral Kingdom (CFK) where the climate is Mediterranean. However, the climate in the eastern coastal-CFK is milder and rainfall occurs year-round, with presumed effects on fire regimes. The Garden Route National Park (GRNP) has recently been established in the region, in a landscape where indigenous forests, fire-prone fynbos shrublands and fire-sensitive plantations of invasive alien trees are interspersed. The park faces considerable challenges related to the management of fire, including significant pressure from the adjacent plantation industry to reduce wildfire hazard by burning fynbos at short intervals, and high levels of invasion by alien trees (largely Pinus species originating from plantations). This study sought to improve understanding of fire regimes in eastern coastal fynbos shrublands, and to provide guidelines for ecologically sound management of fire in the area. My approach entailed (i) an assessment of the context within which fire management was practiced during the past century; (ii) characterisation of the recent fire history and fire regime (1900–2010); (iii) characterisation of the seasonality of fire weather and lightning; (iv) estimation of minimum fire return intervals (FRIs) from juvenile periods and post-fire recruitment success of overstorey proteoids (non-sprouting, slow-maturing, serotinous Proteaceae); and (v) determination of the ecologically appropriate fire season from post-fire recruitment seasonality of proteoids. I established that historically, plantation protection enjoyed priority over fynbos conservation in the area that is now the GRNP. Fynbos close to plantations has most likely been compromised by frequent and low-intensity burning in the past, as well as by invasion by alien trees. In terms of area burnt (1900–2010), natural (lightning-ignited) fires dominated the fire regime, particularly in the east, whereas prescribed burning was relatively unimportant. Typical fire return intervals (FRIs; 8–26 years; 1980–2010) were comparable to those in other fynbos protected areas and appeared to be shorter in the eastern Tsitsikamma than in the western Outeniqua halves of the study area. Proteaceae juvenile periods (4–9 years) and post-fire recruitment success (following fires in ≥7 year-old vegetation) suggested that for biodiversity conservation purposes, FRIs should be no less than nine years in moist, productive fynbos. Increases in the total area burnt annually (since 1980) were correlated with long-term increases in average fire danger weather, suggesting that fire regime changes may be related to global change. Collectively, findings on the seasonality of actual fires and the seasonality of fire danger weather, lightning, and post-fire proteoid recruitment suggested that fires in eastern coastal fynbos are not limited to any particular season, and for this reason managers do not need to be concerned if fires occur in any season. The ecological requirements for higher fire intensity may nonetheless be constrained by a need for safety. I articulated these findings into ecological thresholds pertaining to the different elements of the fire regime in eastern coastal fynbos, to guide adaptive management of fire in the Garden Route National Park. I also recommended a fire management strategy for the park to address the aforementioned operational considerations within the constraints posed by ecological thresholds. Finally, I highlighted further research and monitoring needs.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »