Development of graphene materials and phthalocyanines for application in dye-sensitized solar cells
- Authors: Chindeka, Francis
- Date: 2020
- Subjects: Dye-sensitized solar cells , Graphene , Phthalocyanines , Molecular orbitals , Impedance spectroscopy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166092 , vital:41328
- Description: Two sets of dye-sensitized solar cells (DSSCs) were fabricated. In the first set, dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparative purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value obtained is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency. In the second set, DSSCs were fabricated by using 2(3,5-biscarboxyphenoxy), 9(10), 16(17), 23(24)-tri(tertbutyl) phthalocyaninato Cu (4) and Zn (5) complexes as dyes on the ITO-TiO2 photoanodes containing reduced graphene oxide nanosheets (rGONS) or nitrogen-doped rGONS (NrGONS). The evaluation of the assembled DSSCs revealed that using ITO-TiO2-NrGONS-CuPc (4) photoanode had the highest fill factor (FF) and power conversion efficiency (ɳ) of 69 % and 4.36 % respectively. These results show that the asymmetrical phthalocyanine complexes (4) and (5) showed significant improvement on the performance of the DSSC compared to previous work on symmetrical carboxylated phthalocyanines with ɳ = 3.19%.
- Full Text:
- Date Issued: 2020
- Authors: Chindeka, Francis
- Date: 2020
- Subjects: Dye-sensitized solar cells , Graphene , Phthalocyanines , Molecular orbitals , Impedance spectroscopy
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/166092 , vital:41328
- Description: Two sets of dye-sensitized solar cells (DSSCs) were fabricated. In the first set, dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparative purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value obtained is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency. In the second set, DSSCs were fabricated by using 2(3,5-biscarboxyphenoxy), 9(10), 16(17), 23(24)-tri(tertbutyl) phthalocyaninato Cu (4) and Zn (5) complexes as dyes on the ITO-TiO2 photoanodes containing reduced graphene oxide nanosheets (rGONS) or nitrogen-doped rGONS (NrGONS). The evaluation of the assembled DSSCs revealed that using ITO-TiO2-NrGONS-CuPc (4) photoanode had the highest fill factor (FF) and power conversion efficiency (ɳ) of 69 % and 4.36 % respectively. These results show that the asymmetrical phthalocyanine complexes (4) and (5) showed significant improvement on the performance of the DSSC compared to previous work on symmetrical carboxylated phthalocyanines with ɳ = 3.19%.
- Full Text:
- Date Issued: 2020
Functionalized Ru(II) polypyridines and phthalocyanines: Potential dyes for dye-sensitized solar cells(DSSCs)
- Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24365 , vital:62645
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to- electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24365 , vital:62645
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to- electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01
Functionalized Ru(II) polypyridines and phthalocyanines: Potential dyes for dye-sensitized solar cells(DSSCs)
- Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24343 , vital:62638
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to-electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24343 , vital:62638
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to-electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01
- «
- ‹
- 1
- ›
- »