Advanced radio interferometric simulation and data reduction techniques
- Authors: Makhathini, Sphesihle
- Date: 2018
- Subjects: Interferometry , Radio interferometers , Algorithms , Radio telescopes , Square Kilometre Array (Project) , Very Large Array (Observatory : N.M.) , Radio astronomy
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/57348 , vital:26875
- Description: This work shows how legacy and novel radio Interferometry software packages and algorithms can be combined to produce high-quality reductions from modern telescopes, as well as end-to-end simulations for upcoming instruments such as the Square Kilometre Array (SKA) and its pathfinders. We first use a MeqTrees based simulations framework to quantify how artefacts due to direction-dependent effects accumulate with time, and the consequences of this accumulation when observing the same field multiple times in order to reach the survey depth. Our simulations suggest that a survey like LADUMA (Looking at the Distant Universe with MeerKAT Array), which aims to achieve its survey depth of 16 µJy/beam in a 72 kHz at 1.42 GHz by observing the same field for 1000 hours, will be able to reach its target depth in the presence of these artefacts. We also present stimela, a system agnostic scripting framework for simulating, processing and imaging radio interferometric data. This framework is then used to write an end-to-end simulation pipeline in order to quantify the resolution and sensitivity of the SKA1-MID telescope (the first phase of the SKA mid-frequency telescope) as a function of frequency, as well as the scale-dependent sensitivity of the telescope. Finally, a stimela-based reduction pipeline is used to process data of the field around the source 3C147, taken by the Karl G. Jansky Very Large Array (VLA). The reconstructed image from this reduction has a typical 1a noise level of 2.87 µJy/beam, and consequently a dynamic range of 8x106:1, given the 22.58 Jy/beam flux Density of the source 3C147.
- Full Text:
- Date Issued: 2018
- Authors: Makhathini, Sphesihle
- Date: 2018
- Subjects: Interferometry , Radio interferometers , Algorithms , Radio telescopes , Square Kilometre Array (Project) , Very Large Array (Observatory : N.M.) , Radio astronomy
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/57348 , vital:26875
- Description: This work shows how legacy and novel radio Interferometry software packages and algorithms can be combined to produce high-quality reductions from modern telescopes, as well as end-to-end simulations for upcoming instruments such as the Square Kilometre Array (SKA) and its pathfinders. We first use a MeqTrees based simulations framework to quantify how artefacts due to direction-dependent effects accumulate with time, and the consequences of this accumulation when observing the same field multiple times in order to reach the survey depth. Our simulations suggest that a survey like LADUMA (Looking at the Distant Universe with MeerKAT Array), which aims to achieve its survey depth of 16 µJy/beam in a 72 kHz at 1.42 GHz by observing the same field for 1000 hours, will be able to reach its target depth in the presence of these artefacts. We also present stimela, a system agnostic scripting framework for simulating, processing and imaging radio interferometric data. This framework is then used to write an end-to-end simulation pipeline in order to quantify the resolution and sensitivity of the SKA1-MID telescope (the first phase of the SKA mid-frequency telescope) as a function of frequency, as well as the scale-dependent sensitivity of the telescope. Finally, a stimela-based reduction pipeline is used to process data of the field around the source 3C147, taken by the Karl G. Jansky Very Large Array (VLA). The reconstructed image from this reduction has a typical 1a noise level of 2.87 µJy/beam, and consequently a dynamic range of 8x106:1, given the 22.58 Jy/beam flux Density of the source 3C147.
- Full Text:
- Date Issued: 2018
Data compression, field of interest shaping and fast algorithms for direction-dependent deconvolution in radio interferometry
- Authors: Atemkeng, Marcellin T
- Date: 2017
- Subjects: Radio astronomy , Solar radio emission , Radio interferometers , Signal processing -- Digital techniques , Algorithms , Data compression (Computer science)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/6324 , vital:21089
- Description: In radio interferometry, observed visibilities are intrinsically sampled at some interval in time and frequency. Modern interferometers are capable of producing data at very high time and frequency resolution; practical limits on storage and computation costs require that some form of data compression be imposed. The traditional form of compression is simple averaging of the visibilities over coarser time and frequency bins. This has an undesired side effect: the resulting averaged visibilities “decorrelate”, and do so differently depending on the baseline length and averaging interval. This translates into a non-trivial signature in the image domain known as “smearing”, which manifests itself as an attenuation in amplitude towards off-centre sources. With the increasing fields of view and/or longer baselines employed in modern and future instruments, the trade-off between data rate and smearing becomes increasingly unfavourable. Averaging also results in baseline length and a position-dependent point spread function (PSF). In this work, we investigate alternative approaches to low-loss data compression. We show that averaging of the visibility data can be understood as a form of convolution by a boxcar-like window function, and that by employing alternative baseline-dependent window functions a more optimal interferometer smearing response may be induced. Specifically, we can improve amplitude response over a chosen field of interest and attenuate sources outside the field of interest. The main cost of this technique is a reduction in nominal sensitivity; we investigate the smearing vs. sensitivity trade-off and show that in certain regimes a favourable compromise can be achieved. We show the application of this technique to simulated data from the Jansky Very Large Array and the European Very Long Baseline Interferometry Network. Furthermore, we show that the position-dependent PSF shape induced by averaging can be approximated using linear algebraic properties to effectively reduce the computational complexity for evaluating the PSF at each sky position. We conclude by implementing a position-dependent PSF deconvolution in an imaging and deconvolution framework. Using the Low-Frequency Array radio interferometer, we show that deconvolution with position-dependent PSFs results in higher image fidelity compared to a simple CLEAN algorithm and its derivatives.
- Full Text:
- Date Issued: 2017
- Authors: Atemkeng, Marcellin T
- Date: 2017
- Subjects: Radio astronomy , Solar radio emission , Radio interferometers , Signal processing -- Digital techniques , Algorithms , Data compression (Computer science)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/6324 , vital:21089
- Description: In radio interferometry, observed visibilities are intrinsically sampled at some interval in time and frequency. Modern interferometers are capable of producing data at very high time and frequency resolution; practical limits on storage and computation costs require that some form of data compression be imposed. The traditional form of compression is simple averaging of the visibilities over coarser time and frequency bins. This has an undesired side effect: the resulting averaged visibilities “decorrelate”, and do so differently depending on the baseline length and averaging interval. This translates into a non-trivial signature in the image domain known as “smearing”, which manifests itself as an attenuation in amplitude towards off-centre sources. With the increasing fields of view and/or longer baselines employed in modern and future instruments, the trade-off between data rate and smearing becomes increasingly unfavourable. Averaging also results in baseline length and a position-dependent point spread function (PSF). In this work, we investigate alternative approaches to low-loss data compression. We show that averaging of the visibility data can be understood as a form of convolution by a boxcar-like window function, and that by employing alternative baseline-dependent window functions a more optimal interferometer smearing response may be induced. Specifically, we can improve amplitude response over a chosen field of interest and attenuate sources outside the field of interest. The main cost of this technique is a reduction in nominal sensitivity; we investigate the smearing vs. sensitivity trade-off and show that in certain regimes a favourable compromise can be achieved. We show the application of this technique to simulated data from the Jansky Very Large Array and the European Very Long Baseline Interferometry Network. Furthermore, we show that the position-dependent PSF shape induced by averaging can be approximated using linear algebraic properties to effectively reduce the computational complexity for evaluating the PSF at each sky position. We conclude by implementing a position-dependent PSF deconvolution in an imaging and deconvolution framework. Using the Low-Frequency Array radio interferometer, we show that deconvolution with position-dependent PSFs results in higher image fidelity compared to a simple CLEAN algorithm and its derivatives.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »