Temperature tolerance and humidity requirements of select entomopathogenic fungal isolates for future use in citrus IPM programmes
- Acheampong, M A, Coombes, Candice A, Moore, Sean D, Hill, Martin P
- Authors: Acheampong, M A , Coombes, Candice A , Moore, Sean D , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419399 , vital:71641 , xlink:href="https://doi.org/10.1016/j.jip.2020.107436"
- Description: Several isolates of Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitacae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitacae) have been investigated as possible microbial control agents of key citrus pests in South Africa. Although laboratory results have been promising, field trials against foliar pests have shown limited success. These findings highlighted the need to investigate other biological attributes of these fungal isolates besides virulence in order to select candidates that may be better suited for the foliar environment. Thus, this study investigated the influence of temperature on the in vitro growth of seven indigenous local isolates and the humidity requirements necessary to promote successful infection, in comparison with two commercial isolates (B. bassiana PPRI 5339 and M. anisopliae ICIPE 69). All the fungal isolates grew across a range of temperatures (8–34 °C) and optimally between 26 and 28 °C. Similarly, fungal infection of Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) fifth instars occurred across a range of humidity levels (12%, 43%, 75%, 98%) regardless of fungal concentration, although external sporulation was restricted to treatments exposed to 98% relative humidity. It was concluded that neither temperature nor humidity, when considered alone, is likely to significantly influence the efficacy of any of the isolates in the field, given that they are active within temperature and humidity ranges experienced in South African citrus orchards.
- Full Text:
- Date Issued: 2020
- Authors: Acheampong, M A , Coombes, Candice A , Moore, Sean D , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419399 , vital:71641 , xlink:href="https://doi.org/10.1016/j.jip.2020.107436"
- Description: Several isolates of Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitacae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitacae) have been investigated as possible microbial control agents of key citrus pests in South Africa. Although laboratory results have been promising, field trials against foliar pests have shown limited success. These findings highlighted the need to investigate other biological attributes of these fungal isolates besides virulence in order to select candidates that may be better suited for the foliar environment. Thus, this study investigated the influence of temperature on the in vitro growth of seven indigenous local isolates and the humidity requirements necessary to promote successful infection, in comparison with two commercial isolates (B. bassiana PPRI 5339 and M. anisopliae ICIPE 69). All the fungal isolates grew across a range of temperatures (8–34 °C) and optimally between 26 and 28 °C. Similarly, fungal infection of Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) fifth instars occurred across a range of humidity levels (12%, 43%, 75%, 98%) regardless of fungal concentration, although external sporulation was restricted to treatments exposed to 98% relative humidity. It was concluded that neither temperature nor humidity, when considered alone, is likely to significantly influence the efficacy of any of the isolates in the field, given that they are active within temperature and humidity ranges experienced in South African citrus orchards.
- Full Text:
- Date Issued: 2020
An analysis of the fruit-sucking and fruit-piercing moth complex in citrus orchards in South Africa
- Goddard, Mathew K, Hill, Martin P, Moore, Sean D
- Authors: Goddard, Mathew K , Hill, Martin P , Moore, Sean D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407000 , vital:70329 , xlink:href="https://hdl.handle.net/10520/EJC-15072d6de5"
- Description: Fruit-piercing moths are a sporadic pest of citrus, especially in the Eastern Cape Province of South Africa, where the adults can cause significant damage in outbreak years. However, growers confuse fruit-piercing moths with fruit-sucking moths that do not cause primary damage. In this study we trapped these moths during the 2013–2015 growing seasons. A large number of diverse fruit-feeding moths were collected through weekly sampling in citrus orchards in the Eastern Cape and northern Limpopo provinces. Twenty-three species of fruit-feeding moth were trapped. However, only two were fruit-piercing species, capable of causing primary damage, namely Serrodes partita (Fabricius) (Erebidae) and Eudocima divitiosa (Walker) (Erebidae). Surprisingly S. partita, which has been reported as the main fruit-piercing moth pest of citrus in South Africa, comprised only 6.9 % of trap catches. The categorisation of moths as fruit-piercing or fruit-sucking (causing secondary damage) was confirmed by examining the morphological structures (tearing hooks and erectile barbs) of these moths’ proboscides. This study has shown that in non-outbreak seasons, S. partita comprised only a small percentage of fruit-feeding moths in citrus orchards. However, growers may misidentify the harmless fruit-sucking species as fruit-piercing species, and thus overestimate the density of fruit-piercing moths.
- Full Text:
- Date Issued: 2019
- Authors: Goddard, Mathew K , Hill, Martin P , Moore, Sean D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407000 , vital:70329 , xlink:href="https://hdl.handle.net/10520/EJC-15072d6de5"
- Description: Fruit-piercing moths are a sporadic pest of citrus, especially in the Eastern Cape Province of South Africa, where the adults can cause significant damage in outbreak years. However, growers confuse fruit-piercing moths with fruit-sucking moths that do not cause primary damage. In this study we trapped these moths during the 2013–2015 growing seasons. A large number of diverse fruit-feeding moths were collected through weekly sampling in citrus orchards in the Eastern Cape and northern Limpopo provinces. Twenty-three species of fruit-feeding moth were trapped. However, only two were fruit-piercing species, capable of causing primary damage, namely Serrodes partita (Fabricius) (Erebidae) and Eudocima divitiosa (Walker) (Erebidae). Surprisingly S. partita, which has been reported as the main fruit-piercing moth pest of citrus in South Africa, comprised only 6.9 % of trap catches. The categorisation of moths as fruit-piercing or fruit-sucking (causing secondary damage) was confirmed by examining the morphological structures (tearing hooks and erectile barbs) of these moths’ proboscides. This study has shown that in non-outbreak seasons, S. partita comprised only a small percentage of fruit-feeding moths in citrus orchards. However, growers may misidentify the harmless fruit-sucking species as fruit-piercing species, and thus overestimate the density of fruit-piercing moths.
- Full Text:
- Date Issued: 2019
Screening of entomopathogenic fungi against citrus mealybug, Plannococcus citri (Hemiptera: Pseudococcidae)
- Chartier FitzGerald, Veronique C, Hill, Martin P, Moore, Sean D, Dames, Joanna F
- Authors: Chartier FitzGerald, Veronique C , Hill, Martin P , Moore, Sean D , Dames, Joanna F
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407059 , vital:70333 , xlink:href="https://hdl.handle.net/10520/EJC195093"
- Description: Planococcus citri (citrus mealybug) is a common and damaging citrus crop pest which has proven difficult to control using conventional methods, such as chemical pesticides and insect growth regulators, particularly late in the citrus growing season. The virulence of two entomopathogenic fungal species was studied in laboratory bioassays against the crawlers and adults of P. citri. Isolates of Metarhizium anisopliae and Beauveria bassiana, collected from citrus orchards in the Eastern Cape Province in South Africa, were verified using and molecular techniques. Mealybug bioassays were performed in 24-well plates. Beauveria bassiana (GAR 17 B3) and M. anisopliae (FCM AR 23 B3) isolates both resulted in 67.5 % mortality of mealybug crawlers and B. bassiana (GB AR 23 13 3) resulted in 64 % crawler mortality with concentrations of 1 x 107 conidia/ml. These three isolates were further tested in multipledose bioassays to determine the median lethal concentration (LC50), which were 5.29 x 105conidia/ml for the M. anisopliae isolate (FCM AR 23 B3), 4.25 x 106 conidia/ml for B. bassiana (GAR 17 B3), and 6.65 x 107 conidia/ml B. bassiana (GB AR 23 13 3) for crawlers, respectively. The results of this study suggested that two isolates (M. anisopliae FCM AR 23 B3 and B. bassiana GAR 17 B3) showed potential for further development as biological control agents against citrus mealybug. Further research would be required to determine their ability to perform under field conditions.
- Full Text:
- Date Issued: 2016
- Authors: Chartier FitzGerald, Veronique C , Hill, Martin P , Moore, Sean D , Dames, Joanna F
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407059 , vital:70333 , xlink:href="https://hdl.handle.net/10520/EJC195093"
- Description: Planococcus citri (citrus mealybug) is a common and damaging citrus crop pest which has proven difficult to control using conventional methods, such as chemical pesticides and insect growth regulators, particularly late in the citrus growing season. The virulence of two entomopathogenic fungal species was studied in laboratory bioassays against the crawlers and adults of P. citri. Isolates of Metarhizium anisopliae and Beauveria bassiana, collected from citrus orchards in the Eastern Cape Province in South Africa, were verified using and molecular techniques. Mealybug bioassays were performed in 24-well plates. Beauveria bassiana (GAR 17 B3) and M. anisopliae (FCM AR 23 B3) isolates both resulted in 67.5 % mortality of mealybug crawlers and B. bassiana (GB AR 23 13 3) resulted in 64 % crawler mortality with concentrations of 1 x 107 conidia/ml. These three isolates were further tested in multipledose bioassays to determine the median lethal concentration (LC50), which were 5.29 x 105conidia/ml for the M. anisopliae isolate (FCM AR 23 B3), 4.25 x 106 conidia/ml for B. bassiana (GAR 17 B3), and 6.65 x 107 conidia/ml B. bassiana (GB AR 23 13 3) for crawlers, respectively. The results of this study suggested that two isolates (M. anisopliae FCM AR 23 B3 and B. bassiana GAR 17 B3) showed potential for further development as biological control agents against citrus mealybug. Further research would be required to determine their ability to perform under field conditions.
- Full Text:
- Date Issued: 2016
Agathis bishopi, a larval parasitoid of false codling moth Thaumatotibia leucotreta: laboratory rearing and effect of adult food on parasitism and longevity
- Zimba, Kennedy J, Moore, Sean D, Heshula, Lelethu U P, Hill, Martin P
- Authors: Zimba, Kennedy J , Moore, Sean D , Heshula, Lelethu U P , Hill, Martin P
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406985 , vital:70328 , xlink:href="https://hdl.handle.net/10520/EJC185849"
- Description: Agathis bishopi (Nixon) (Hymenoptera: Braconidae) is a koinobiont larval endoparasitoid of false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), a pest of economic importance on citrus in South Africa. In the field Agathis bishopi was found to parasitise up to 34 % of FCM larvae in fruit, reflecting reasonable biocontrol potential. Improving the rearing of A. bishopi would therefore complement the existing biocontrol strategies for FCM. In several parasitic wasps, sugar concentration and feeding duration has been shown to influence parasitism and longevity. However, their effect on parasitism and longevity of A. bishopi is unknown. In the present study a rearing protocol for A. bishopi is described, including evaluation of the effects of honey concentration on parasitoid longevity. On average, 18.2%of FCM larvae in rearing containers were parasitised under the rearing protocol described. Cotton wool, instead of paper towelling, as honey carrier for feeding parasitoids in rearing containers significantly increased parasitism and yield of offspring. Furthermore, longevity significantly increased with higher concentrations of honey. Maximum lifespan duration for male and female parasitoids was achieved when parasitoids were fed on 36 % (w/v) honey. Results from this study indicate that A. bishopi requires a sufficient concentration of sugar, coupled with frequent and prolonged feeding on a cotton wool substrate, in order to achieve maximum parasitism and longevity. Such information provides a basis for optimising mass-rearing and longevity of A. bishopi and parasitism of FCM in orchards.
- Full Text:
- Date Issued: 2015
- Authors: Zimba, Kennedy J , Moore, Sean D , Heshula, Lelethu U P , Hill, Martin P
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406985 , vital:70328 , xlink:href="https://hdl.handle.net/10520/EJC185849"
- Description: Agathis bishopi (Nixon) (Hymenoptera: Braconidae) is a koinobiont larval endoparasitoid of false codling moth (FCM), Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), a pest of economic importance on citrus in South Africa. In the field Agathis bishopi was found to parasitise up to 34 % of FCM larvae in fruit, reflecting reasonable biocontrol potential. Improving the rearing of A. bishopi would therefore complement the existing biocontrol strategies for FCM. In several parasitic wasps, sugar concentration and feeding duration has been shown to influence parasitism and longevity. However, their effect on parasitism and longevity of A. bishopi is unknown. In the present study a rearing protocol for A. bishopi is described, including evaluation of the effects of honey concentration on parasitoid longevity. On average, 18.2%of FCM larvae in rearing containers were parasitised under the rearing protocol described. Cotton wool, instead of paper towelling, as honey carrier for feeding parasitoids in rearing containers significantly increased parasitism and yield of offspring. Furthermore, longevity significantly increased with higher concentrations of honey. Maximum lifespan duration for male and female parasitoids was achieved when parasitoids were fed on 36 % (w/v) honey. Results from this study indicate that A. bishopi requires a sufficient concentration of sugar, coupled with frequent and prolonged feeding on a cotton wool substrate, in order to achieve maximum parasitism and longevity. Such information provides a basis for optimising mass-rearing and longevity of A. bishopi and parasitism of FCM in orchards.
- Full Text:
- Date Issued: 2015
Genetic and biological characterisation of a novel Plutella xylostella granulovirus, PlxyGV-SA
- Abdulkadir, Fatima, Knox, Caroline M, Marsberg, Tamryn, Hill, Martin P, Moore, Sean D
- Authors: Abdulkadir, Fatima , Knox, Caroline M , Marsberg, Tamryn , Hill, Martin P , Moore, Sean D
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417971 , vital:71498 , xlink:href="https://doi.org/10.1007/s10526-015-9666-3"
- Description: Plutella xylostella granulovirus (PlxyGV) has been isolated from insect populations in many countries and is considered a potential biopesticide for sustainable control of P. xylostella (L.) (Lepidoptera: Plutellidae). Several PlxyGV isolates have been genetically characterised, and the full genome sequence of PlxyGV-Japan is available for comparison with novel isolates. A South African PlxyGV was recently recovered from an overcrowded laboratory P. xylostella colony and identified as a genetically distinct isolate by sequencing of the granulin gene and restriction endonuclease (REN) analysis of genomic DNA. In this report, PlxyGV-SA was further characterised by PCR amplification and sequencing of egt, lef-8 and lef-9 genes, and several amino acid substitutions were observed. The PstI REN profile of PlxyGV-SA was different from that of PlxyGV-Japan in terms of band size and number, thereby confirming its novel genetic identity. Surface dose bioassays showed that PlxyGV-SA is pathogenic to neonate but not late instar larvae at the same and higher virus doses, indicating that a biopesticide should be targeted at early larval stages in the field.
- Full Text:
- Date Issued: 2015
- Authors: Abdulkadir, Fatima , Knox, Caroline M , Marsberg, Tamryn , Hill, Martin P , Moore, Sean D
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417971 , vital:71498 , xlink:href="https://doi.org/10.1007/s10526-015-9666-3"
- Description: Plutella xylostella granulovirus (PlxyGV) has been isolated from insect populations in many countries and is considered a potential biopesticide for sustainable control of P. xylostella (L.) (Lepidoptera: Plutellidae). Several PlxyGV isolates have been genetically characterised, and the full genome sequence of PlxyGV-Japan is available for comparison with novel isolates. A South African PlxyGV was recently recovered from an overcrowded laboratory P. xylostella colony and identified as a genetically distinct isolate by sequencing of the granulin gene and restriction endonuclease (REN) analysis of genomic DNA. In this report, PlxyGV-SA was further characterised by PCR amplification and sequencing of egt, lef-8 and lef-9 genes, and several amino acid substitutions were observed. The PstI REN profile of PlxyGV-SA was different from that of PlxyGV-Japan in terms of band size and number, thereby confirming its novel genetic identity. Surface dose bioassays showed that PlxyGV-SA is pathogenic to neonate but not late instar larvae at the same and higher virus doses, indicating that a biopesticide should be targeted at early larval stages in the field.
- Full Text:
- Date Issued: 2015
Microbial agents for control of aquatic weeds and their role in integrated management
- Authors: Ray, P , Hill, Martin P
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423550 , vital:72071 , xlink:href="https://www.cabidigitallibrary.org/doi/abs/10.1079/PAVSNNR20128014"
- Description: Aquatic ecosystems throughout the world are threatened by the presence of invasive aquatic plants, both floating and submerged. Some of the aquatic species, such as water hyacinth (Eichhornia crassipes [Mart.] Solms), alligator weed, Alternanthera philoxeroides (Mart.), giant salvinia, Salvinia molesta D.S. Mitchell and water lettuce (Pistia stratiotes L.), Griseb. despite being relatively minor problems in their native range, have become major invaders of aquatic habitats in other parts of the world after having escaped from their natural enemies. Unchecked growth of aquatic vegetation is generally undesirable and reduces the value of the water resource. Despite adopting all control options including manual, mechanical, chemical and classical biological, the problem persists. The current weed management is oriented towards finding approaches that are effective in controlling the weed and reducing environmental contamination from herbicides. Plant pathogens have been gaining increasing attention and interest among those concerned with developing environmentally friendly, effective and compatible approaches for integrated management of the noxious weeds. This paper discusses some of the major microbial agents associated with aquatic weeds and their increasing role in integrated weed management.
- Full Text:
- Date Issued: 2013
- Authors: Ray, P , Hill, Martin P
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423550 , vital:72071 , xlink:href="https://www.cabidigitallibrary.org/doi/abs/10.1079/PAVSNNR20128014"
- Description: Aquatic ecosystems throughout the world are threatened by the presence of invasive aquatic plants, both floating and submerged. Some of the aquatic species, such as water hyacinth (Eichhornia crassipes [Mart.] Solms), alligator weed, Alternanthera philoxeroides (Mart.), giant salvinia, Salvinia molesta D.S. Mitchell and water lettuce (Pistia stratiotes L.), Griseb. despite being relatively minor problems in their native range, have become major invaders of aquatic habitats in other parts of the world after having escaped from their natural enemies. Unchecked growth of aquatic vegetation is generally undesirable and reduces the value of the water resource. Despite adopting all control options including manual, mechanical, chemical and classical biological, the problem persists. The current weed management is oriented towards finding approaches that are effective in controlling the weed and reducing environmental contamination from herbicides. Plant pathogens have been gaining increasing attention and interest among those concerned with developing environmentally friendly, effective and compatible approaches for integrated management of the noxious weeds. This paper discusses some of the major microbial agents associated with aquatic weeds and their increasing role in integrated weed management.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »