“Turn on” fluorescence enhancement of Zn octacarboxyphthaloyanine-graphene oxide conjugates by hydrogen peroxide
- Authors: Shumba, Munyaradzi , Mashazi, Philani N , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190438 , vital:44994 , xlink:href="https://doi.org/10.1016/j.jlumin.2015.11.001"
- Description: Zn octacarboxy phthalocyanine-reduced graphene oxide or graphene oxide conjugates were characterized by absorption spectroscopy, transmission electron microscopy, fluorescence spectroscopy, X-ray diffraction, thermo gravimetric analysis and X-ray photon spectroscopy. The presence of reduced graphene oxide or graphene oxide resulted in the quenching (turn on) of Zn octacarboxy phthalocyanine fluorescence which can be explained by photoinduced electron transfer. Zn octacarboxy phthalocyaninereduced graphene oxide or graphene oxide conjugates “turned on” fluorescence showed a linear response to hydrogen peroxide hence their potential to be used as sensors. The nanoprobe developed showed high selectivity towards hydrogen peroxide in the presence of physiological interferences.
- Full Text:
- Date Issued: 2016
“Turn on” fluorescence enhancement of Zn octacarboxyphthaloyanine-graphene oxide conjugates by hydrogen peroxide
- Authors: Shumba, Munyaradzi , Mashazi, Philani N , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/240875 , vital:50881 , xlink:href="https://doi.org/10.1016/j.jlumin.2015.11.001"
- Description: Zn octacarboxy phthalocyanine-reduced graphene oxide or graphene oxide conjugates were characterized by absorption spectroscopy, transmission electron microscopy, fluorescence spectroscopy, X-ray diffraction, thermo gravimetric analysis and X-ray photon spectroscopy. The presence of reduced graphene oxide or graphene oxide resulted in the quenching (turn on) of Zn octacarboxy phthalocyanine fluorescence which can be explained by photoinduced electron transfer. Zn octacarboxy phthalocyanine-reduced graphene oxide or graphene oxide conjugates “turned on” fluorescence showed a linear response to hydrogen peroxide hence their potential to be used as sensors. The nanoprobe developed showed high selectivity towards hydrogen peroxide in the presence of physiological interferences.
- Full Text:
- Date Issued: 2016
Unraveling the biogeographic origins of the Eurasian watermilfoil (Myriophyllum spicatum) invasion in North America.pdf
- Identifier: http://hdl.handle.net/10962/424892 , vital:72192
- Description: Using phylogeographic analyses to determine the geographic origins of biological invaders is important for identifying environmental adaptations and genetic composition in their native range as well as biocontrol agents among indigenous herbivores. Eurasian watermilfoil (Myriophyllum spicatum) and its hybrid with northern watermilfoil (M. sibiricum) are found throughout the contiguous United States and southern Canada, forming one of the most economically costly aquatic plant invasions in North America, yet the geographic origin of the invasion remains unknown. The objectives of our study included determining the geographic origin of Eurasian watermilfoil in North America as well as the maternal lineage of the hybrids.
- Full Text:
- Date Issued: 2016