Synthesis, stereochemistry and in vitro STD NMR and in silico HIV-1 PR enzyme-binding potential of MBH-derived inhibitors
- Authors: Tukulula, Matshawandile , Olasupo, Idris A , Mugumbate, Grace C , Lobb, Kevin A , Klein, Rosalyn , Sayed, Yasien , Tshiwawa, Tendamudzimu , Kaye, Perry T
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452813 , vital:75172 , xlink:href="https://doi.org/10.1016/j.molstruc.2022.133716"
- Description: Aza-Michael reactions of a pyridine-3-carbaldehyde-derived Morita-Baylis-Hillman (MBH) adduct with various amines have afforded a series of 10 diastereomeric products, stereochemical analysis of which has been achieved using a combination of NMR (1D, 2D and NOESY) and computer modelling methods. Saturation Transfer Difference (STD) 1H NMR spectroscopy and in silico molecular docking studies have been used to explore the HIV-1 protease sub-type C enzyme binding potential of these compounds in five different HIV-1 PR enzyme receptors.
- Full Text:
- Date Issued: 2022
Synthesis, characterization and biological activity of some Dithiourea Derivatives:
- Authors: Odame, Felix , Hosten, Eric C , Krause, Jason , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Sayed, Yasien , Frost, Carminita L , Lobb, Kevin A , Tshentu, Zenixole R
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163046 , vital:41007 , DOI: 10.17344/acsi.2019.5689
- Description: Novel dithiourea derivatives have been designed as HIV-1 protease inhibitors using Autodock 4.2, synthesized and characterized by spectroscopic methods and microanalysis.
- Full Text:
- Date Issued: 2020
A New Synthetic Method for Tetraazatricyclic Derivatives and Evaluation of Their Biological Properties
- Authors: Odame, Felix , Betz, Richard , Hosten, Eric C , Krause, Jason , Isaacs, Michelle , Hoppe, Heinrich C , Khanye, Setshaba D , Sayed, Yasien , Frost, P Carminita , Lobb, Kevin A , Tshentu, Zenixole R
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123189 , vital:35413 , https://doi.org/10.1002/slct.201802930
- Description: Herein, we propose novel quinolones incorporating an INH moiety as potential drug templates against TB. The quinolone-based compounds bearing an INH moiety attached via a hydrazide–hydrazone bond were synthesised and evaluated against Mycobacterium tuberculosis H37Rv (MTB). The compounds were also evaluated for cytotoxicity against HeLa cell lines. These compounds showed significant activity (MIC90) against MTB in the range of 0.2–8 μM without any cytotoxic effects. Compounds 10 (MIC90; 0.9 μM), 11 (MIC90; 0.2 μM), 12 (MIC90; 0.8 μM) and compound 15 (MIC90; 0.8 μM), the most active compounds in this series, demonstrate activities on par with INH and superior to those reported for the fluoroquinolones. The SAR analysis suggests that the nature of substituents at positions −1 and −3 of the quinolone nucleus influences anti-MTB activity. Aqueous solubility evaluation and in vitro metabolic stability of compound 12 highlights favourable drug-like properties for this compound class.
- Full Text:
- Date Issued: 2018
Towards the synthesis of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors
- Authors: Olomola, Temitope O , Klein, Rosalyn , Lobb, Kevin A , Sayed, Yasien , Kaye, Perry T
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448963 , vital:74774 , xlink:href="https://doi.org/10.1016/j.tetlet.2010.09.121"
- Description: 3-(Chloromethyl)coumarins, obtained via acid-catalysed cyclisation of salicylaldehyde-derived Baylis– Hillman adducts, have been treated with propargylamine; reaction of the resulting 3-alkynylmethylcoumarins with azidothymidine (AZT) in the presence of a Cu(I) catalyst has afforded a series of cycloaddition products for evaluation, in their own right, as potential dual-action HIV-1 protease and non-nucleoside reverse transcriptase inhibitors, and as scaffolds for further structural elaboration.
- Full Text:
- Date Issued: 2010