Polyurethane composite adsorbent using solid phase extraction method for preconcentration of metal ion from aqueous solution
- Authors: Olorundare, O F , Msagati, T A M , Okonkwo, J O , Krause, Rui W M , Mamba, Bhekie B
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125386 , vital:35778 , https://doi.org/10.1007/s13762-014-0645-5
- Description: Polyurethane composite adsorbent polymeric material was prepared and investigated for selected solid-phase extraction for metal ions, prior to its determination by inductively coupled plasma optical emission spectrometry. The surface characterisation was done using Fourier transform infrared spectroscopy. The separation and preconcentration conditions of the analytes investigated includes influence of pH, sample loading flow rate, elution flow rate, type and concentration of eluents. The optimum pH for the highest efficient recoveries for all metal ions, which ranged from 70 to 85 %, is pH 7. The metal ions were quantitatively eluted with 5 mL of 2 mol/L HNO3. Common coexisting ions did not interfere with the separation. The percentage recovery of the metal ions ranged between 70 and 89 %, while the results for the limit of detection and limit of quantification ranged from 0.249 to 0.256 and 0.831 to 0.855, respectively. The experimental tests showed good preconcentration results of trace levels of metal ions using synthesised polyurethane polymer adsorbent composite.
- Full Text:
- Date Issued: 2015
Preparation and use of maize tassels’ activated carbon for the adsorption of phenolic compounds in environmental waste water samples
- Authors: Olorundare, O F , Msagati, T A M , Okonkwo, J O , Krause, Rui W M , Mamba, Bhekie B
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125331 , vital:35773 , https://doi.org/10.1007/s11356-014-3742-6
- Description: The determination and remediation of three phenolic compounds bisphenol A (BPA), ortho-nitrophenol (o-NTP), parachlorophenol (PCP) in wastewater is reported. The analysis of these molecules in wastewater was done using gas chromatography (GC) × GC time-of-flight mass spectrometry while activated carbon derived from maize tassel was used as an adsorbent. During the experimental procedures, the effect of various parameters such as initial concentration, pH of sample solution, eluent volume, and sample volume on the removal efficiency with respect to the three phenolic compounds was studied. The results showed that maize tassel produced activated carbon (MTAC) cartridge packed solid-phase extraction (SPE) system was able to remove the phenolic compounds effectively (90.84–98.49 %, 80.75–97.11 %, and 78.27–97.08 % for BPA, o-NTP, and PCP, respectively) . The MTAC cartridge packed SPE sorbent performance was compared to commercially produced C18 SPE cartridges and found to be comparable. All the parameters investigated were found to have a notable influence on the adsorption efficiency of the phenolic compounds from wastewaters at different magnitudes.
- Full Text:
- Date Issued: 2015
Activated carbon from lignocellulosic waste residues: effect of activating agent on porosity characteristics and use as adsorbents for organic species
- Authors: Olorundare, O F , Okonkwo, J O , Msagati, T A M , Mamba, Bhekie B , Krause, Rui W M
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/125233 , vital:35748 , https://doi.org/10.1007/s11270-014-1876-2
- Description: This paper reports on the effect of activating agents such as the impregnation ratio of phosphoric acid (1:1–1:5) at constant activation temperature on the performance of porous activated carbon from waste residues (maize tassel). The variation in the impregnation ratio of the produced activated carbon (AC) from 1:1 to 1:5 enabled the preparation of a high surface area (1,263 m2/g) and a large pore volume (1.592 cm3/g) of AC produced from maize tassel (MT) using a convectional chemical activating agent (phosphoric acid). Impregnation ratios (IR) of the precursors were varied between 1:1 and 1:5 in which it was found that the ratio of 1:4 was optimal based on the high surface area, while 1:5 has the optimal pore volume value for the produced activated carbon.
- Full Text:
- Date Issued: 2014
Steam activation, characterisation and adsorption studies of activated carbon from maize tassels.
- Authors: Olorundare, O F , Msagati, Titus A , Krause, Rui W M , Okonkwo, J O , Mamba, Bhekie B
- Date: 2014
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123847 , vital:35507 , https://doi.org/10.1080/02757540.2013.877001
- Description: In this paper, steam-produced activated carbon (STAC) from maize tassel (MT) was evaluated for its ability to remove basic dye (methylene blue MB) from aqueous solution in a batch adsorption process. The equilibrium experiments were conducted in the range of 50–300 mg/L initial MB concentrations at 30°C, for effect of pH, adsorbent dosage and contact time. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models of adsorption. Freundlich adsorption isotherm was found to have highest value of R2(R2=0.97) compared to other models of Langmuir and Temkin having (0.96 and 0.95 respectively). STAC has a high adsorptive capacity for MB dye (200 mg/g) and also showed favourable adsorption for the dye with the separation factor for the dye-activated carbon system. The kinetic data obtained were analysed using pseudo first-order kinetic equation and pseudo second-order kinetic equation. The experimental data fitted well into pseudo second-order kinetic equation, as demonstrated by the high value of R2.
- Full Text:
- Date Issued: 2014
Pre-concentration of toxic metals using electrospun amino-functionalized nylon-6 nanofibre sorbent
- Authors: Darko, Godfrey , Sobola, Abdullahi O , Adewuyi, Sheriff , Okonkwo, J O , Torto, Nelson
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6571 , http://hdl.handle.net/10962/d1004134
- Description: This paper presents a new approach for pre-concentrating toxic metals (As, Cd, Ni and Pb) in aqueous environments using an amino-functionalized electrospun nanofibre sorbent. The sorbent, composed of nanofibres of average diameter 80 ± 10 nm and specific surface area of 58m2 g–1, exhibited fast adsorption kinetics (<20 min) for As, Cd, Ni and Pb. The optimalpHfor the uptake of As, Cd, Ni and Pb were 5.5, 6.0, 6.5 and 11, respectively. The adsorption process best fitted the Freundlich isothermand followed the first-order kinetics. The highest pre-concentration achieved using the sorbent was 41.99 (Ni in treated wastewater). The capacity of the sorbent to pre-concentrate the toxic metals was compared with those of aqua regia and HNO3+H2O2 digestions. The pre-concentration factors achieved for Cd in river water samples can be ranked as aqua regia digestion (0.73) > adsorption (0.34)>HNO3+H2O2 (0.23) digestion.Asimilar trend was observed for Ni in river water as well as Ni andCdin tap water samples. Pb ions in the river water samples were pre-concentrated slightly better using the two digestion methods pre-concentration factors ~22) compared to adsorption method (pre-concentration factor ~21). The use of the electrospun amino-functionalized nanofibre sorbent presentsanefficientand cost-effective alternative for pre-concentration of toxic metals inaqueousenvironments.
- Full Text:
- Date Issued: 2012