A review of the biocontrol programmes against aquatic weeds in South Africa
- Authors: Coetzee, Julie A , Bownes, Angela , Martin, Grant D , Miller, Benjamin E , Smith, Rosalie , Weyl, Philip S R , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406965 , vital:70326 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a18"
- Description: Biological control (biocontrol) against invasive macrophytes is one of the longest standing programmes in South Africa, initiated in the 1970s against water hyacinth, Pontederia crassipes Mart. (Pontederiaceae). Since then, 15 agent species (13 insects, one mite and one pathogen) have been released against six weeds, most of which are floating macrophytes, with excellent levels of success. The release of the water hyacinth planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae) in particular, has improved biocontrol prospects for water hyacinth since 2018. In the last decade, however, a new suite of submerged and rooted emergent invasive macrophytes has been targeted. The first release against a submerged macrophyte in South Africa, and the first release against Brazilian waterweed, Egeria densa Planch. (Hydrocharitaceae), anywhere in the world, was achieved with the release of a leafmining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae). Yellow flag, Iris pseudacorus L. (Iridaceae) and Mexican waterlily, Nymphaea mexicana Zucc. (Nymphaeaceae), have also been targeted for biocontrol for the first time worldwide, and are in the early stages of agent development. Post-release evaluations, long term monitoring and controlled experiments have highlighted the need for a more holistic approach to managing aquatic invasive plants in South Africa, whose presence is largely driven by eutrophication, resulting in regime shifts between floating and submerged invaded states.
- Full Text:
- Date Issued: 2021
Progress and prospects for the biological control of invasive alien grasses Poaceae) in South Africa
- Authors: Sutton, Guy F , Bownes, Angela , Visser, Vernon , Mapaura, Anthony , Canavan, Kim N
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414448 , vital:71147 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a12"
- Description: Historically, invasive alien grasses have not been considered a major threat in South Africa, and as a result, very few resources are allocated to their management. However, there is an increasing awareness of the severe environmental and socio-economic impacts of invasive grasses and the need for appropriate management options for their control. South Africa has a long history of successfully implementing weed biological control (biocontrol) to manage invasive alien plants, however much like the rest of the world, invasive grasses do not feature prominently as targets for biocontrol. The implementation and early indicators of success of the few grass biocontrol programmes globally and the finding that grasses can be suitable targets, suggests that biocontrol could start to play an important role in managing invasive alien grasses in South Africa. In this paper, we evaluated the prospects for implementing novel grass biocontrol projects over the next ten years against 48 grasses that have been determined to represent the highest risk based on their current environmental and economic impacts. The grasses were ranked in order of priority using the Biological Control Target Selection system. Five grasses were prioritised – Arundo donax L., Cortaderia jubata (Lem.) Stapf, Cortaderia selloana (Schult and Schult) Asch. and Graebn., Nassella trichotoma (Hack. ex Arech.), and Glyceria maxima (Hartm.) Holmb., based on attributes that make them suitable biocontrol targets. Arundo donax has already been the target of a biocontrol programme in South Africa. We reviewed the progress made towards the biocontrol of this species and discuss how this programme could be developed going forward. Moreover, we outline how biocontrol could be implemented to manage the remaining four high-priority targets. While biocontrol of grasses is not without its challenges (e.g. unresolved taxonomies, conflicts of interest and a lack of supporting legislation), South Africa has an opportunity to learn from existing global research and begin to invest in biocontrol of high-priority species that are in most need of control.
- Full Text:
- Date Issued: 2021
My enemy's enemies: recruiting hemipteran-tending generalist ants for biological control in citrus orchards by spatial partitioning of foraging webs
- Authors: Bownes, Angela , Moore, Sean D , Villet, Martin H
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/442075 , vital:73953 , https://hdl.handle.net/10520/EJC160247
- Description: Generalist predators are contentious biocontrol agents, especially ants that protect pestilent hemipterans from specialist predators and parasitoids. We attempted to force generalist, hemipteran-tending ants into a degree of dietary specificity by spatially partitioning and simplifying their trophic web. Pupae of Helicoverpa armigera, Thaumatotibia leucotreta and Ceratitis capitata introduced into a citrus orchard survived significantly better in plots where all nests of two pestilent, generalist ant species namely Anoplolepis custodiens and Pheidole megacephala had been poisoned compared with untreated control plots. In some plots the ants' foraging environments were partitioned into arboreal and epigaeic trophic webs using sticky barriers to prevent ground-nesting ants from ascending the trees. Plots partitioned this way showed suppressed levels of survival of emplaced pest pupae that were similar to those in unpartitioned control plots. Pest survival was significantly lower for T. leucotreta than for H. armigera and C. capitata, implicating prey body size or life cycle duration as factors in predation by ants. Pheidole megacephala and the predator complex as a whole can be valuable agents in the natural control of soil-pupating citrus pests if they are restricted to the ground. Trunk banding, rather than poisoning, is therefore recommended as part of managing ecologically mercenary ants in citrus orchards.
- Full Text:
- Date Issued: 2014
Nutrient-mediated effects on Cornops aquaticum Brüner (Orthoptera: Acrididae), a potential biological control agent of water hyacinth, Eichhornia crassipes (Mart.) Solms (Pontederiaceae)
- Authors: Bownes, Angela , Hill, Martin P , Byrne, Marcus J
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406131 , vital:70241 , xlink:href="https://doi.org/10.1016/j.biocontrol.2013.07.023"
- Description: Environmental nutrient availability can drive and modify both plant responses to herbivory by phytophagous insects and insect feeding patterns which, in insect-weed systems, may ultimately determine whether biological control succeeds or fails. The impacts of insect biological control agents on the invasive aquatic weed, water hyacinth (Eichhornia crassipes) vary with nutrient levels in the environment. It was therefore considered important to evaluate nutrient-specific responses of E. crassipes to a grasshopper herbivore, Cornops aquaticum, prior to its release in South Africa. Both plant productivity and the response of E. crassipes to herbivory by C. aquaticum were nutrient dependent. Increases in plant biomass and leaf and ramet production were correlated with increases in nutrients in the water and plant biomass accumulation was reduced by herbivory at all three nutrient levels tested (high = 67%; medium = 100%; low = 400%). C. aquaticum nymphs fed E. crassipes leaves with the lowest nitrogen levels produced the highest biomass of frass during their development, indicating compensatory consumption. The results suggest that environmental nutrient availability will influence efficacy of C. aquaticum. They also provide further evidence that E. crassipes problems are exacerbated by an over-abundance of nutrients in aquatic environments, and that biological control would be a highly effective management tool if aquatic systems in South Africa were less polluted. Additionally, the results also show how an understanding of the fundamental responses of E. crassipes and its insect biocontrol agents to their environment can assist in determining specific management strategies or interventions according to prevailing site-specific conditions.
- Full Text:
- Date Issued: 2013
Prospects for the biological control of submerged macrophytes in South Africa
- Authors: Coetzee, Julie A , Bownes, Angela , Martin, Grant D
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/452295 , vital:75118 , https://hdl.handle.net/10520/EJC32899
- Description: Historically, biological control efforts against aquatic plants in South Africa have focused on floating species, and as a result, there has been a dearth of research into the invasion and control of submerged macrophytes. With numerous submerged invasive species already established in South Africa, thriving horticultural and aquarium industries, nutrient-rich water systems, and a limited knowledge of the drivers of invasions of submerged macrophytes, South Africa is highly vulnerable to a second phase of aquatic plant problems. Experience gained in the U.S.A. on biological control against submerged weeds, such as hydrilla, Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae) and spiked / Eurasian watermilfoil, Myriophyllum spicatum L. (Haloragaceae), have provided South African researchers with the necessary foundation to initiate programmes against these weeds. Research in South Africa is currently focused on pre-release studies on the biological control of H. verticillata, using an undescribed fly, Hydrellia sp. (Diptera: Ephydridae) and a weevil, Bagous hydrillae O'Brien (Coleoptera: Curculionidae); and on M. spicatum using a North American weevil, Euhrychiopsis lecontei Dietz (Coleoptera: Curculionidae). Feasibility studies into biological control of some incipient submerged weeds are also being conducted, including Brazilian water weed, Egeria densa Planch. (Hydrocharitaceae), Canadian water weed, Elodea canadensis Mitch. (Hydrocharitaceae) and cabomba, Cabomba caroliniana A. Gray (Cabombaceae). Progress with, and potential constraints that may limit these programmes, are discussed.
- Full Text:
- Date Issued: 2011
Evaluation of a plant-herbivore system in determining potential efficacy of a candidate biological control agent, cornops aquaticum for water hyacinth, eichhornia crassipes
- Authors: Bownes, Angela
- Date: 2009
- Subjects: Water hyacinth -- Control -- South Africa , Eichhornia crassipedes , Pontederiaceae , Grasshoppers , Biological pest control agents -- South Africa , Weeds -- Biological control -- South Africa , Invasive plants -- Biological control -- South Africa
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5687 , http://hdl.handle.net/10962/d1005373
- Description: Water hyacinth, Eichhornia crassipes Mart. Solms-Laubach (Pontederiaceae), a freefloating aquatic macrophyte of Neotropical origin, was introduced into South Africa as an ornamental aquarium plant in the early 1900’s. By the 1970’s it had reached pest proportions in dams and rivers around the country. Due to the sustainability, cost efficiency and low environmental risk associated with biological control, this has been a widely used method in an attempt to reduce infestations to below the threshold where they cause economic and ecological damage. To date, five arthropod and one pathogen biocontrol agents have been introduced for the control of water hyacinth but their impact has been variable. It is believed that their efficacy is hampered by the presence of highly eutrophic systems in South Africa in which plant growth is prolific and the negative effects of herbivory are therefore mitigated. It is for these reasons that new, potentially more damaging biocontrol agents are being considered for release. The water hyacinth grasshopper, Cornops aquaticum Brüner (Orthoptera: Acrididae), which is native to South America and Mexico, was brought into quarantine in Pretoria, South Africa in 1995. Although the grasshopper was identified as one of the most damaging insects associated with water hyacinth in its native range, it has not been considered as a biocontrol agent for water hyacinth anywhere else in the world. After extensive host-range testing which revealed it to be safe for release, a release permit for this candidate agent was issued in 2007. However, host specificity testing is no longer considered to be the only important component of pre-release screening of candidate biocontrol agents. Investigating biological and ecological aspects of the plant-herbivore system that will assist in determination of potential establishment, efficacy and the ability to build up good populations in the recipient environment are some of the important factors. This thesis is a pre-release evaluation of C. aquaticum to determine whether it is sufficiently damaging to water hyacinth to warrant its release. It investigated interactions between the grasshopper and water hyacinth under a range of nutrient conditions found in South African water bodies as well as the impact of the grasshopper on the competitive performance of water hyacinth. Both plant growth rates and the response of water hyacinth to herbivory by the grasshopper were influenced by nutrient availability to the plants. The ability of water hyacinth to compensate for loss of tissue through herbivory was greater under eutrophic nutrient conditions. However, a negative linear relationship was found between grasshopper biomass and water hyacinth performance parameters such as biomass accumulation and leaf production, even under eutrophic conditions. Water hyacinth’s compensatory ability in terms of its potential to mitigate to detrimental effects of insect feeding was dependent on the amount of damage caused by herbivory by the grasshopper. Plant biomass and the competitive ability of water hyacinth in relation to another freefloating aquatic weed species were reduced by C. aquaticum under eutrophic nutrient conditions, in a short space of time. It was also found that grasshopper feeding and characteristics related to their population dynamics such as fecundity and survival were significantly influenced by water nutrient availability and that environmental nutrient availability will influence the control potential of this species should it be released in South Africa. Cornops aquaticum shows promise as a biocontrol agent for water hyacinth but additional factors that were not investigated in this study such as compatibility with the South African climate and the current water hyacinth biocontrol agents need to be combined with these data to make a decision on its release. Possible management options for this species if it is to be introduced into South Africa are discussed.
- Full Text:
- Date Issued: 2009
The structure of ant communities and their impact on soil-pupating pests in citrus orchards in the Grahamstown area of the Eastern Cape
- Authors: Bownes, Angela
- Date: 2003
- Subjects: Ants -- South Africa -- Eastern Cape , Pests -- Control -- South Africa , Homoptera -- Control -- South Africa -- Eastern Cape , Citrus -- Diseases and pests -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5775 , http://hdl.handle.net/10962/d1005463 , Ants -- South Africa -- Eastern Cape , Pests -- Control -- South Africa , Homoptera -- Control -- South Africa -- Eastern Cape , Citrus -- Diseases and pests -- South Africa -- Eastern Cape
- Description: Two ant species, Pheidole megacephala (Fabricius) and Anoplolepis custodiens (Smith) reach pest status in citrus orchards through precipitating outbreaks of homopterous pests. However, predacious ants, including these two ant species, play an important role in pest suppression in agroecosystems and are therefore beneficial to these systems. If A. custodiens and P. megacephala are important natural control agents in citrus, using ant bands to break the mutualism between the ants and the Homoptera as a method of ant control is preferable to poisoning. Ant communities were sampled by pitfall trapping in three experimental subunits of 2-, 4-, 15- and 30-year-old citrus orchards, in the Grahamstown area of the Eastern Cape. In one subunit in each orchard, populations of P. megacephala and A. custodiens were suppressed by poison applications. In a second subunit, trees were banded with trunk barriers so that ants were prevented from foraging in the trees and a third subunit served as the untreated control. Bait pupae of bollworm, false codling moth and fruit fly were planted in bait trays in all of the subunits to investigate predation on these citrus pests in the relative absence of predacious ants and where they were excluded from the trees. Pheidole megacephala dominated exclusively in all of the plots. Community composition did not change dramatically with increasing age of the trees, but species diversity and species abundance did. Rank-abundance curves showed that community diversity was highest in the 2-year-old plots and lowest in the 30-year-old plots. The Simpson and Shannon-Wiener diversity indices and their evenness measures indicated that diversity and equitability were highest in the poisoned subunits and lowest in the banded subunits. Principle component analysis revealed that the poisoned subunits were similar and distinct in species composition, that there was significant monthly variation in species composition and that community stability increases with an increase in orchard age. The presence of P. megacephala was significantly negatively correlated (rs = -0.293; p < 0.001) with pest pupal survival. Pupal survival was significantly higher for bollworm (p < 0.001), FCM (p < 0.001) and fruit fly (p < 0.001) in the poisoned subunits, than in the banded and control subunits. There was a general trend for survivorship to increase with an increase in the age of the trees. A significant difference (p < 0.001) was found between the months in which the trials were carried out. Pupal survival was significantly lower (p < 0.001) for FCM than for bollworm and fruit fly. In citrus orchards, ant communities are organised by ecological processes and interactions and are influenced by methods of ant control. Ant bands are preferable to poisoning as a method of ant control, so that beneficial species are left on the ground to prey on pests that pupate in the soil. Maintaining high ant species diversity in citrus orchards would be beneficial as predation on the pupae was more effective where ant species diversity was higher.
- Full Text:
- Date Issued: 2003