Macroinvertebrate communities associated with duckweed (Lemnaceae) in two Eastern Cape rivers, South Africa
- Muskett, Phillippa C, Hill, Jaclyn M, Weyl, Philip S R
- Authors: Muskett, Phillippa C , Hill, Jaclyn M , Weyl, Philip S R
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444065 , vital:74182 , https://doi.org/10.2989/16085914.2016.1241173
- Description: The functional feeding groups and diversity of macroinvertebrate communities associated with duckweed mats in the New Years River (two sites) and Bloukrans River (two sites), Eastern Cape province, South Africa, were assessed. Duckweed (Lemnaceae) is a ubiquitous family of floating macrophytes. A total of 41 macroinvertebrate families were collected monthly over a six-month period from February to July 2014. Duckweed biomass in both rivers was highly variable both temporally and spatially. The majority of identified macroinvertebrate taxa were predators and detritivores, with a small percentage of herbivores. An average of approximately 26% of the macroinvertebrate taxa found were from families that include species from more than one functional feeding group. Although overall measures of diversity and ecosystem health (Fisher’s α and Simpson’s index) remained constant over time in the New Years River, significant differences in macroinvertebrate community structure were seen between sites and months on both rivers, with dissimilarity being driven by a larger number of species in the New Years River. This high variability within macroinvertebrate assemblages probably reflects a combination of heterogeneous duckweed distribution, variation in physico-chemistry, opportunistic behaviours of macroinvertebrate predators and/or successional colonisation of duckweed mats.
- Full Text:
- Date Issued: 2016
- Authors: Muskett, Phillippa C , Hill, Jaclyn M , Weyl, Philip S R
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444065 , vital:74182 , https://doi.org/10.2989/16085914.2016.1241173
- Description: The functional feeding groups and diversity of macroinvertebrate communities associated with duckweed mats in the New Years River (two sites) and Bloukrans River (two sites), Eastern Cape province, South Africa, were assessed. Duckweed (Lemnaceae) is a ubiquitous family of floating macrophytes. A total of 41 macroinvertebrate families were collected monthly over a six-month period from February to July 2014. Duckweed biomass in both rivers was highly variable both temporally and spatially. The majority of identified macroinvertebrate taxa were predators and detritivores, with a small percentage of herbivores. An average of approximately 26% of the macroinvertebrate taxa found were from families that include species from more than one functional feeding group. Although overall measures of diversity and ecosystem health (Fisher’s α and Simpson’s index) remained constant over time in the New Years River, significant differences in macroinvertebrate community structure were seen between sites and months on both rivers, with dissimilarity being driven by a larger number of species in the New Years River. This high variability within macroinvertebrate assemblages probably reflects a combination of heterogeneous duckweed distribution, variation in physico-chemistry, opportunistic behaviours of macroinvertebrate predators and/or successional colonisation of duckweed mats.
- Full Text:
- Date Issued: 2016
Russian wheat aphids: Breakfast, lunch, and supper. Feasting on small grains in South Africa
- Botha, Christiaan E J, Sacranie, S, Gallagher, Sean, Hill, Jaclyn M
- Authors: Botha, Christiaan E J , Sacranie, S , Gallagher, Sean , Hill, Jaclyn M
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69031 , vital:29374 , https://doi.org/10.1016/j.sajb.2016.12.006
- Description: The Russian Wheat Aphid (Diuraphis noxia, RWA) negatively impacts commercially grown barley and wheat in South Africa. Climate change, the attendant rise in [CO2], and the appearance of new RWA biotypes have the potential to induce severe crop yield loss in agriculturally important wheat and barley cultivars. This study presents data showing changes in relative aphid population numbers, concurrently with assessments of plant damage under controlled environmental conditions, under ambient and elevated (450 ppm) [CO2]. Extensive structural damage to the vascular tissue and disruption to the transport systems were revealed using light, fluorescence and electron microscopy. This, coupled with biotype population studies, demonstrated that RWA has the capacity to inflict severe, potentially permanent damage to vegetative small grain plants. Furthermore, some currently ‘resistant’ cultivars may well lose resistance as a direct result of increasing atmospheric [CO2]. A small (50 ppm) increase in atmospheric [CO2] may result in increased aphid population numbers, potentially serious plant damage and, by implication, a potentially negative impact on yield, as increased aphid density per plant leads to an accelerated disruption of the assimilate and transpiration transport pathways. These outcomes pose a direct threat to the commercial small grain industry of South Africa and by extension, to other small grain production areas elsewhere.
- Full Text: false
- Date Issued: 2016
- Authors: Botha, Christiaan E J , Sacranie, S , Gallagher, Sean , Hill, Jaclyn M
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69031 , vital:29374 , https://doi.org/10.1016/j.sajb.2016.12.006
- Description: The Russian Wheat Aphid (Diuraphis noxia, RWA) negatively impacts commercially grown barley and wheat in South Africa. Climate change, the attendant rise in [CO2], and the appearance of new RWA biotypes have the potential to induce severe crop yield loss in agriculturally important wheat and barley cultivars. This study presents data showing changes in relative aphid population numbers, concurrently with assessments of plant damage under controlled environmental conditions, under ambient and elevated (450 ppm) [CO2]. Extensive structural damage to the vascular tissue and disruption to the transport systems were revealed using light, fluorescence and electron microscopy. This, coupled with biotype population studies, demonstrated that RWA has the capacity to inflict severe, potentially permanent damage to vegetative small grain plants. Furthermore, some currently ‘resistant’ cultivars may well lose resistance as a direct result of increasing atmospheric [CO2]. A small (50 ppm) increase in atmospheric [CO2] may result in increased aphid population numbers, potentially serious plant damage and, by implication, a potentially negative impact on yield, as increased aphid density per plant leads to an accelerated disruption of the assimilate and transpiration transport pathways. These outcomes pose a direct threat to the commercial small grain industry of South Africa and by extension, to other small grain production areas elsewhere.
- Full Text: false
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »