Asymmetrical zinc phthalocyanine conjugated to various nanomaterials for applications in phototransformation of organic pollutants and photoinactivation of bacteria
- Mgidlana, Sithi, Openda, Yolande Ikala, Nyokong, Tebello
- Authors: Mgidlana, Sithi , Openda, Yolande Ikala , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360344 , vital:65081 , xlink:href="https://doi.org/10.1016/j.molstruc.2022.134850"
- Description: Zinc phthalocyanine (ZnPc) complexes are linked to metallic nanoparticles covalently via amide and ester bonds. The photocatalytic activity of the conjugates of ZnPc complexes with NiWO4, Ag2WO4, CoWO4 and Ag-Fe3O4 nanoparticles are evaluated for photodegradation of methylene blue, tetracycline, and dibenzothiophene. The photocatalytic efficiencies of the prepared phthalocyanine complexes increased in the presence of nanoparticles. This work also reports on the photodynamic antimicrobial chemotherapy activity of these materials against Staphylococcus aureus (S. aureus) bacteria. The results indicate that Ag2WO4 based nanoconjugates exhibit high antimicrobial activity with higher log reduction compared to NiWO4, CoWO4 and Ag-Fe3O4 based materials.
- Full Text:
- Date Issued: 2023
- Authors: Mgidlana, Sithi , Openda, Yolande Ikala , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360344 , vital:65081 , xlink:href="https://doi.org/10.1016/j.molstruc.2022.134850"
- Description: Zinc phthalocyanine (ZnPc) complexes are linked to metallic nanoparticles covalently via amide and ester bonds. The photocatalytic activity of the conjugates of ZnPc complexes with NiWO4, Ag2WO4, CoWO4 and Ag-Fe3O4 nanoparticles are evaluated for photodegradation of methylene blue, tetracycline, and dibenzothiophene. The photocatalytic efficiencies of the prepared phthalocyanine complexes increased in the presence of nanoparticles. This work also reports on the photodynamic antimicrobial chemotherapy activity of these materials against Staphylococcus aureus (S. aureus) bacteria. The results indicate that Ag2WO4 based nanoconjugates exhibit high antimicrobial activity with higher log reduction compared to NiWO4, CoWO4 and Ag-Fe3O4 based materials.
- Full Text:
- Date Issued: 2023
Combination of photodynamic antimicrobial chemotherapy and ciprofloxacin to combat S. aureus and E. coli resistant biofilms
- Openda, Yolande Ikala, Nyokong, Tebello
- Authors: Openda, Yolande Ikala , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360384 , vital:65084 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.103142"
- Description: Photodynamic antimicrobial chemotherapy (PACT) coupled with an antibiotic, ciprofloxacin (CIP), was investigated using two indium metallated cationic photosensitizers, a porphyrin (1) and a phthalocyanine (2). Applying PACT followed by the antibiotic treatment led to a remarkable reduction in the biofilm cell survival of two antibiotic-resistant bacterial strains, S. aureus (Gram-positive) and E. coli (Gram-nenative). Treating both bacteria strains with PACT alone showed no significant activity at 32 µM with 15 min irradiation, while CIP alone exhibited a minimum biofilm inhibition concentration (MBIC) at 4 and 8 µg/mL on S. aureus and E. coli, respectively following 24 h incubation. The combined treatment resulted in the complete eradication of the matured biofilms with high log10 reduction values of 7.05 and 7.20 on S. aureus and E. coli, respectively, at low concentrations. It was found that 15 min PACT irradiation of 8 µM of complexes (1 and 2) combined with 2 µg/mL of CIP have a 100% reduction of the resistant S. aureus biofilms. Whereas the total killing of E. coli was obtained when combining 8 µM of complex 1 and 16 µM of complex 2 both combined with 4 µg/mL of CIP.
- Full Text:
- Date Issued: 2023
- Authors: Openda, Yolande Ikala , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360384 , vital:65084 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.103142"
- Description: Photodynamic antimicrobial chemotherapy (PACT) coupled with an antibiotic, ciprofloxacin (CIP), was investigated using two indium metallated cationic photosensitizers, a porphyrin (1) and a phthalocyanine (2). Applying PACT followed by the antibiotic treatment led to a remarkable reduction in the biofilm cell survival of two antibiotic-resistant bacterial strains, S. aureus (Gram-positive) and E. coli (Gram-nenative). Treating both bacteria strains with PACT alone showed no significant activity at 32 µM with 15 min irradiation, while CIP alone exhibited a minimum biofilm inhibition concentration (MBIC) at 4 and 8 µg/mL on S. aureus and E. coli, respectively following 24 h incubation. The combined treatment resulted in the complete eradication of the matured biofilms with high log10 reduction values of 7.05 and 7.20 on S. aureus and E. coli, respectively, at low concentrations. It was found that 15 min PACT irradiation of 8 µM of complexes (1 and 2) combined with 2 µg/mL of CIP have a 100% reduction of the resistant S. aureus biofilms. Whereas the total killing of E. coli was obtained when combining 8 µM of complex 1 and 16 µM of complex 2 both combined with 4 µg/mL of CIP.
- Full Text:
- Date Issued: 2023
Evaluation of the antibacterial activity of gallic acid anchored phthalocyanine-doped silica nanoparticles towards Escherichia coli and Staphylococcus aureus biofilms and planktonic cells
- Magadla, Aviwe, Openda, Yolande Ikala, Mpeta, Lekhetho S, Nyokong, Tebello
- Authors: Magadla, Aviwe , Openda, Yolande Ikala , Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360424 , vital:65087 , xlink:href="https://doi.org/10.1016/j.pdpdt.2023.103520"
- Description: In this work, we have described the synthesis of phthalocyanine complexes Zn(II) tetrakis 4-(5-formylpyridin-2-yl)oxy) phthalocyanine (2), Zn(II) tetrakis-1 butyl 4-(2-(6- (tetra-phenoxy)pyridin-3-yl) vinyl)pyridin-1-ium phthalocyanine (3) and Zn(II) tetrakis 1 butyl 5-(2-(1-butylpyridin-1-ium-4-yl)vinyl)-2-(tetra-phenoxy)pyridin-1-ium phthalocyanine (4). The effect of a varying number of charges when the Pc complexes are alone or grafted in gallic acid (GA) tagged silica nanoparticles on photodynamic antimicrobial chemotherapy (PACT) is investigated toward Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli) in both planktonic and biofilm forms. Complex 4, bearing a total of 8 cationic charges, displayed the highest activity with log CFU (colony forming units) values of 8.60 and 6.42 against E.coli and S.aureus biofilms, respectively. The surface stability of E.coli and S.aureus biofilms in the presence of 4 and its conjugate was analyzed using cyclic voltammetry. Scanning electron microscopy (SEM) and Raman spectra are also used to study the conformational and biochemical changes within biofilm upon subjecting them to PACT.
- Full Text:
- Date Issued: 2023
- Authors: Magadla, Aviwe , Openda, Yolande Ikala , Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360424 , vital:65087 , xlink:href="https://doi.org/10.1016/j.pdpdt.2023.103520"
- Description: In this work, we have described the synthesis of phthalocyanine complexes Zn(II) tetrakis 4-(5-formylpyridin-2-yl)oxy) phthalocyanine (2), Zn(II) tetrakis-1 butyl 4-(2-(6- (tetra-phenoxy)pyridin-3-yl) vinyl)pyridin-1-ium phthalocyanine (3) and Zn(II) tetrakis 1 butyl 5-(2-(1-butylpyridin-1-ium-4-yl)vinyl)-2-(tetra-phenoxy)pyridin-1-ium phthalocyanine (4). The effect of a varying number of charges when the Pc complexes are alone or grafted in gallic acid (GA) tagged silica nanoparticles on photodynamic antimicrobial chemotherapy (PACT) is investigated toward Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli) in both planktonic and biofilm forms. Complex 4, bearing a total of 8 cationic charges, displayed the highest activity with log CFU (colony forming units) values of 8.60 and 6.42 against E.coli and S.aureus biofilms, respectively. The surface stability of E.coli and S.aureus biofilms in the presence of 4 and its conjugate was analyzed using cyclic voltammetry. Scanning electron microscopy (SEM) and Raman spectra are also used to study the conformational and biochemical changes within biofilm upon subjecting them to PACT.
- Full Text:
- Date Issued: 2023
In vitro photoinactivation of S. aureus and photocatalytic degradation of tetracycline by novel phthalocyanine-graphene quantum dots nano-assemblies
- Openda, Yolande Ikala, Mgidlana, Sithi, Nyokong, Tebello
- Authors: Openda, Yolande Ikala , Mgidlana, Sithi , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229895 , vital:49721 , xlink:href="https://doi.org/10.1016/j.jlumin.2022.118863"
- Description: A novel asymmetrical zinc (II) phthalocyanine (Pc) 4 bearing three dimethoxy groups and one carboxyl group was linked to glutathione capped graphene quantum dots (GQDs) by the reaction of carboxylic acid substituent on Pc 4 with the amino group on the GQDs. On the other side, the symmetrical Pc analog 3 was linked to the same nanoparticles through π-π interactions. The as-formed nano-photosensitizers were fully characterized by spectroscopic methods and their photophysicochemical properties were investigated as well. Photodynamic antimicrobial chemotherapy was performed on the planktonic cells of S. aureus strain. And the results show that these nano assemblies were able to completely inhibit the metabolic activity of the resistant bacteria strain S. aureus with a 10.26 log reduction in the viable count. Again, asymmetrical Pc showed higher photocatalytic activity compared to the symmetrical complex with higher kobs and fast initial rates for the former. The photocatalysis obeyed the Langmuir-Hinshelwood kinetic model. The target conjugates showed all the advantages of two different groups existing on a single entity.
- Full Text:
- Date Issued: 2022
- Authors: Openda, Yolande Ikala , Mgidlana, Sithi , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229895 , vital:49721 , xlink:href="https://doi.org/10.1016/j.jlumin.2022.118863"
- Description: A novel asymmetrical zinc (II) phthalocyanine (Pc) 4 bearing three dimethoxy groups and one carboxyl group was linked to glutathione capped graphene quantum dots (GQDs) by the reaction of carboxylic acid substituent on Pc 4 with the amino group on the GQDs. On the other side, the symmetrical Pc analog 3 was linked to the same nanoparticles through π-π interactions. The as-formed nano-photosensitizers were fully characterized by spectroscopic methods and their photophysicochemical properties were investigated as well. Photodynamic antimicrobial chemotherapy was performed on the planktonic cells of S. aureus strain. And the results show that these nano assemblies were able to completely inhibit the metabolic activity of the resistant bacteria strain S. aureus with a 10.26 log reduction in the viable count. Again, asymmetrical Pc showed higher photocatalytic activity compared to the symmetrical complex with higher kobs and fast initial rates for the former. The photocatalysis obeyed the Langmuir-Hinshelwood kinetic model. The target conjugates showed all the advantages of two different groups existing on a single entity.
- Full Text:
- Date Issued: 2022
Novel cationic-chalcone phthalocyanines for photodynamic therapy eradication of S. aureus and E. coli bacterial biofilms and MCF-7 breast cancer
- Openda, Yolande Ikala, Babu, Balaji, Nyokong, Tebello
- Authors: Openda, Yolande Ikala , Babu, Balaji , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300129 , vital:57895 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102863"
- Description: New tetrasubstituted zinc (II) and indium (III) phthalocyanines bearing dimethylamino chalcone group (complexes 3 and 4) as well as their quaternized analogs (3a and 4a) have been assessed for their photodynamic therapy (PDT) of cancer as well as photodynamic antimicrobial chemotherapy activities against biofilms and planktonic cultures of pathogenic bacteria of Staphylococcus aureus and Escherichia coli. Compared to the non-quaternized phthalocyanines 3 and 4, the cationic phthalocyanines 3a and 4a exhibit a higher photodynamic inactivation against the planktonic cells with log reduction values above 9 at a concentration of 1.25 µM. This was attributed to the positive charge which enhances cellular uptake. More interestingly, 3a and 4a show a higher photodynamic inactivation (less than 3% of S. aureus survived) on their biofilm counterparts thanks to their stronger affinity to these cells. 3a and 4a Pcs also exhibited interesting PDT activity against MCF-7 cancer cells giving IC50 values of 17.9 and 7.4 μM, respectively following 15 min irradiation. The obtained results in this work show that the positively charged phthalocyanines 3a and 4a are potential antibacterial photosensitizers that show some selectivity toward the Gram-positive and Gram-negative bacteria as well as MCF-7 breasts cancer cells.
- Full Text:
- Date Issued: 2022
- Authors: Openda, Yolande Ikala , Babu, Balaji , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300129 , vital:57895 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102863"
- Description: New tetrasubstituted zinc (II) and indium (III) phthalocyanines bearing dimethylamino chalcone group (complexes 3 and 4) as well as their quaternized analogs (3a and 4a) have been assessed for their photodynamic therapy (PDT) of cancer as well as photodynamic antimicrobial chemotherapy activities against biofilms and planktonic cultures of pathogenic bacteria of Staphylococcus aureus and Escherichia coli. Compared to the non-quaternized phthalocyanines 3 and 4, the cationic phthalocyanines 3a and 4a exhibit a higher photodynamic inactivation against the planktonic cells with log reduction values above 9 at a concentration of 1.25 µM. This was attributed to the positive charge which enhances cellular uptake. More interestingly, 3a and 4a show a higher photodynamic inactivation (less than 3% of S. aureus survived) on their biofilm counterparts thanks to their stronger affinity to these cells. 3a and 4a Pcs also exhibited interesting PDT activity against MCF-7 cancer cells giving IC50 values of 17.9 and 7.4 μM, respectively following 15 min irradiation. The obtained results in this work show that the positively charged phthalocyanines 3a and 4a are potential antibacterial photosensitizers that show some selectivity toward the Gram-positive and Gram-negative bacteria as well as MCF-7 breasts cancer cells.
- Full Text:
- Date Issued: 2022
The implications of ortho-, meta-and para-directors on the in-vitro photodynamic antimicrobial chemotherapy activity of cationic pyridyl-dihydrothiazole phthalocyanines
- Magadla, Aviwe, Openda, Yolande Ikala, Nyokong, Tebello
- Authors: Magadla, Aviwe , Openda, Yolande Ikala , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295875 , vital:57386 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.103029"
- Description: Cationic Zn phthalocyanine complexes were derived by alkylation reaction of tetra-(pyridinyloxy) phthalocyanines (Pcs) at the ortho, meta, and para positions to form Zn (II) tetrakis 3-(4-(2-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (2), Zn (II) tetrakis 3-(4-(3-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (4) and Zn (II) tetrakis 3-(4-(4-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (6). The photophysicochemical behaviors of the Pc complexes were assessed. The meta and para-substituted complexes gave high singlet oxygen quantum yields. The cationic Pcs demonstrated good planktonic antibacterial activity against Staphylococcus aureus and Escherichia coli with the high log reduction values of 9.29 and 8.55, respectively. The cationic complexes also showed a significant decrease in the viability of in vitro biofilms after photo-antimicrobial chemotherapy at 100 µM for both Staphylococcus aureus and Escherichia coli biofilms.
- Full Text:
- Date Issued: 2022
- Authors: Magadla, Aviwe , Openda, Yolande Ikala , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295875 , vital:57386 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.103029"
- Description: Cationic Zn phthalocyanine complexes were derived by alkylation reaction of tetra-(pyridinyloxy) phthalocyanines (Pcs) at the ortho, meta, and para positions to form Zn (II) tetrakis 3-(4-(2-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (2), Zn (II) tetrakis 3-(4-(3-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (4) and Zn (II) tetrakis 3-(4-(4-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (6). The photophysicochemical behaviors of the Pc complexes were assessed. The meta and para-substituted complexes gave high singlet oxygen quantum yields. The cationic Pcs demonstrated good planktonic antibacterial activity against Staphylococcus aureus and Escherichia coli with the high log reduction values of 9.29 and 8.55, respectively. The cationic complexes also showed a significant decrease in the viability of in vitro biofilms after photo-antimicrobial chemotherapy at 100 µM for both Staphylococcus aureus and Escherichia coli biofilms.
- Full Text:
- Date Issued: 2022
A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine–detonation nanodiamond–Ag nanoconjugates
- Openda, Yolande Ikala, Matshitse, Refilwe, Nyokong, Tebello
- Authors: Openda, Yolande Ikala , Matshitse, Refilwe , Nyokong, Tebello
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163825 , vital:41073 , DOI: 10.1039/D0PP00075B
- Description: The present work reports on the synthesis and characterization of novel zinc (2) and indium (3) 2-amino-4-bromophenoxy substituted phthalocyanines (Pcs) along with the self-assembled nanoconjugates formed via π–π stacking interaction onto detonation nanodiamonds (DNDs) to form 2@DNDs and 3@DNDs. 2@DNDs and 3@DNDs were covalently linked to chitosan–silver mediated nanoparticles (CSAg) to form 2@DNDs-CSAg and 3@DNDs-CSAg nanoconjugates. High singlet oxygen quantum yields in DMSO of 0.69 and 0.72 for Pcs alone and 0.90 and 0.92 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively, were obtained.
- Full Text:
- Date Issued: 2020
- Authors: Openda, Yolande Ikala , Matshitse, Refilwe , Nyokong, Tebello
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163825 , vital:41073 , DOI: 10.1039/D0PP00075B
- Description: The present work reports on the synthesis and characterization of novel zinc (2) and indium (3) 2-amino-4-bromophenoxy substituted phthalocyanines (Pcs) along with the self-assembled nanoconjugates formed via π–π stacking interaction onto detonation nanodiamonds (DNDs) to form 2@DNDs and 3@DNDs. 2@DNDs and 3@DNDs were covalently linked to chitosan–silver mediated nanoparticles (CSAg) to form 2@DNDs-CSAg and 3@DNDs-CSAg nanoconjugates. High singlet oxygen quantum yields in DMSO of 0.69 and 0.72 for Pcs alone and 0.90 and 0.92 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively, were obtained.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »