Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design:
- Musyoka, Thommas M, Njuguna, Joyce N, Tastan Bishop, Özlem
- Authors: Musyoka, Thommas M , Njuguna, Joyce N , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162962 , vital:41000 , https://0-doi.org.wam.seals.ac.za/10.1186/s12936-019-2790-2
- Description: Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors.
- Full Text:
- Date Issued: 2019
- Authors: Musyoka, Thommas M , Njuguna, Joyce N , Tastan Bishop, Özlem
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/162962 , vital:41000 , https://0-doi.org.wam.seals.ac.za/10.1186/s12936-019-2790-2
- Description: Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors.
- Full Text:
- Date Issued: 2019
Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide-based inhibitor design:
- Musyoka, Thommas M, Njuguna, Joyce N, Tastan Bishop, Özlem
- Authors: Musyoka, Thommas M , Njuguna, Joyce N , Tastan Bishop, Özlem
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148392 , vital:38735 , DOI: 10.1101/381566
- Description: Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors.
- Full Text:
- Date Issued: 2018
- Authors: Musyoka, Thommas M , Njuguna, Joyce N , Tastan Bishop, Özlem
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148392 , vital:38735 , DOI: 10.1101/381566
- Description: Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »