Could enemy release explain invasion success of Sagittaria platyphylla in Australia and South Africa?.
- Kwong, Raelene M, Sagliocco, Jean Louis, Harms, Nathan E, Butler, Kym L, Martin, Grant D, Green, Peter T
- Authors: Kwong, Raelene M , Sagliocco, Jean Louis , Harms, Nathan E , Butler, Kym L , Martin, Grant D , Green, Peter T
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76881 , vital:30633 , https://doi.org/10.1016/j.aquabot.2018.11.011
- Description: Sagittaria platyphylla (delta arrowhead) is an emergent aquatic macrophyte native to southeastern United States of America that has been introduced into Australia and South Africa as an ornamental pond and aquarium plant. Compared to plants in the native range, S. platyphylla in the introduced range have greater reproductive capacity and form extensive infestations that dominate shallow waterbodies. One explanation for the invasive success of S. platyphylla in introduced countries is that plants are devoid of biotic pressures that would regulate population abundance in their native range (the enemy release hypothesis). We previously reported on field surveys that documented the number of pathogens and insect herbivores associated with S. platyphylla in native and introduced ranges. Here, we quantify the damage caused by these natural enemies to S. platyphylla in the two ranges. As predicted, damage to plants caused by pathogens and insect herbivores was much greater in the native than the introduced range at both the plant and population level. In introduced regions herbivory was low (less than 10%) in every plant part, while in North America insect damage to fruiting heads was 46% (of fruiting heads attacked), damage to leaves was between 33 to 57%, and internal herbivore damage to petioles and the inflorescence scapes was 56% and 43% respectively. Pathogen damage to leaves was between 39 to 57% of leaves per plant affected, compared to 9% in Australia and 8% in South Africa. This lack of biotic resistance from herbivores and disease may have facilitated S. platyphylla invasion in Australia and South Africa.
- Full Text:
- Date Issued: 2019
- Authors: Kwong, Raelene M , Sagliocco, Jean Louis , Harms, Nathan E , Butler, Kym L , Martin, Grant D , Green, Peter T
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76881 , vital:30633 , https://doi.org/10.1016/j.aquabot.2018.11.011
- Description: Sagittaria platyphylla (delta arrowhead) is an emergent aquatic macrophyte native to southeastern United States of America that has been introduced into Australia and South Africa as an ornamental pond and aquarium plant. Compared to plants in the native range, S. platyphylla in the introduced range have greater reproductive capacity and form extensive infestations that dominate shallow waterbodies. One explanation for the invasive success of S. platyphylla in introduced countries is that plants are devoid of biotic pressures that would regulate population abundance in their native range (the enemy release hypothesis). We previously reported on field surveys that documented the number of pathogens and insect herbivores associated with S. platyphylla in native and introduced ranges. Here, we quantify the damage caused by these natural enemies to S. platyphylla in the two ranges. As predicted, damage to plants caused by pathogens and insect herbivores was much greater in the native than the introduced range at both the plant and population level. In introduced regions herbivory was low (less than 10%) in every plant part, while in North America insect damage to fruiting heads was 46% (of fruiting heads attacked), damage to leaves was between 33 to 57%, and internal herbivore damage to petioles and the inflorescence scapes was 56% and 43% respectively. Pathogen damage to leaves was between 39 to 57% of leaves per plant affected, compared to 9% in Australia and 8% in South Africa. This lack of biotic resistance from herbivores and disease may have facilitated S. platyphylla invasion in Australia and South Africa.
- Full Text:
- Date Issued: 2019
Invaded habitat incompatibility affects the suitability of the potential biological control agent Listronotus sordidus for Sagittaria platyphylla in South Africa
- Martin, Grant D, Coetzee, Julie A, Lloyd, Melissa, Nombewu, Sinoxolo E, Ndlovu, Mpilonhle S, Kwong, Raelene M
- Authors: Martin, Grant D , Coetzee, Julie A , Lloyd, Melissa , Nombewu, Sinoxolo E , Ndlovu, Mpilonhle S , Kwong, Raelene M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103926 , vital:32323 , https://doi.org/10.1080/09583157.2018.1460314
- Description: Sagittaria platyphylla (Engelmann) J.G. Smith (Alismataceae) was first recorded in South Africa in 2008 and is considered to be an emerging weed with naturalised populations occurring throughout the country. A biological control programme was initiated in Australia and surveys conducted between 2010 and 2012 yielded potential agents, including the crown feeding weevil, Listronotus sordidus Gyllenhal (Coleoptera: Curculionidae). The potential of L. sordidus as a candidate biological control agent against S. platyphylla in South Africa was examined. Although adult feeding was recorded on a number of plant species, oviposition and larval development indicated a narrow host range restricted to the Alismataceae. In South Africa, S. platyphylla populations are primarily found in inundated systems. However, laboratory studies showed that L. sordidus did not oviposit on inundated plants, potentially nullifying the impact of the insect on South African populations. It is suggested that even though L. sordidus is a damaging, specific agent, its limited impact on inundated plant populations in South Africa does not justify the inherent risk associated with the release of a biological control agent.
- Full Text: false
- Date Issued: 2018
- Authors: Martin, Grant D , Coetzee, Julie A , Lloyd, Melissa , Nombewu, Sinoxolo E , Ndlovu, Mpilonhle S , Kwong, Raelene M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103926 , vital:32323 , https://doi.org/10.1080/09583157.2018.1460314
- Description: Sagittaria platyphylla (Engelmann) J.G. Smith (Alismataceae) was first recorded in South Africa in 2008 and is considered to be an emerging weed with naturalised populations occurring throughout the country. A biological control programme was initiated in Australia and surveys conducted between 2010 and 2012 yielded potential agents, including the crown feeding weevil, Listronotus sordidus Gyllenhal (Coleoptera: Curculionidae). The potential of L. sordidus as a candidate biological control agent against S. platyphylla in South Africa was examined. Although adult feeding was recorded on a number of plant species, oviposition and larval development indicated a narrow host range restricted to the Alismataceae. In South Africa, S. platyphylla populations are primarily found in inundated systems. However, laboratory studies showed that L. sordidus did not oviposit on inundated plants, potentially nullifying the impact of the insect on South African populations. It is suggested that even though L. sordidus is a damaging, specific agent, its limited impact on inundated plant populations in South Africa does not justify the inherent risk associated with the release of a biological control agent.
- Full Text: false
- Date Issued: 2018
Biogeographical comparison of the emergent macrophyte, Sagittaria platyphylla in its native and introduced ranges
- Kwong, Raelene M, Sagliocco, Jean Louis, Harms, Nathan E, Butler, Kym L, Green, Peter T, Martin, Grant D
- Authors: Kwong, Raelene M , Sagliocco, Jean Louis , Harms, Nathan E , Butler, Kym L , Green, Peter T , Martin, Grant D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76980 , vital:30652 , https://doi.org/10.1016/j.aquabot.2017.05.001
- Description: Understanding why some plant species become invasive is important to predict and prevent future weed threats and identify appropriate management strategies. Many hypotheses have been proposed to explain why plants become invasive, yet few studies have quantitatively compared plant and population parameters between native and introduced range populations to gain an objective perspective on the causes of plant invasion. The present study uses a biogeographical field survey to compare morphological and reproductive traits and abundance between the native range (USA) and two introduced ranges (Australia and South Africa) of Sagittaria platyphylla (Engelm.) J.G. Sm (Alismataceae), a highly invasive freshwater macrophyte. Introduced and native populations differed in sexual reproductive output with the number of achenes per fruiting head and individual achene weight found to be 40% and 50% greater in introduced populations respectively. However, no other morphological traits were found to be consistently different between the native and both introduced ranges, especially after taking into account differences in environmental conditions between the three ranges. Although populations in introduced regions were larger and occupied greater percentage cover, no differences in plant density were evident. Our results suggest that, apart from sexual reproduction, many of the trait patterns observed in S. platyphylla are influenced by environmental and habitat conditions within the native and invaded ranges. We conclude that the enemy release hypothesis best explains the results observed for sexual reproduction. In particular, we hypothesise that a release from natural enemies, specifically a pre-dispersal seed predator, may induce reproductive plasticity in S. platyphylla.
- Full Text:
- Date Issued: 2017
- Authors: Kwong, Raelene M , Sagliocco, Jean Louis , Harms, Nathan E , Butler, Kym L , Green, Peter T , Martin, Grant D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76980 , vital:30652 , https://doi.org/10.1016/j.aquabot.2017.05.001
- Description: Understanding why some plant species become invasive is important to predict and prevent future weed threats and identify appropriate management strategies. Many hypotheses have been proposed to explain why plants become invasive, yet few studies have quantitatively compared plant and population parameters between native and introduced range populations to gain an objective perspective on the causes of plant invasion. The present study uses a biogeographical field survey to compare morphological and reproductive traits and abundance between the native range (USA) and two introduced ranges (Australia and South Africa) of Sagittaria platyphylla (Engelm.) J.G. Sm (Alismataceae), a highly invasive freshwater macrophyte. Introduced and native populations differed in sexual reproductive output with the number of achenes per fruiting head and individual achene weight found to be 40% and 50% greater in introduced populations respectively. However, no other morphological traits were found to be consistently different between the native and both introduced ranges, especially after taking into account differences in environmental conditions between the three ranges. Although populations in introduced regions were larger and occupied greater percentage cover, no differences in plant density were evident. Our results suggest that, apart from sexual reproduction, many of the trait patterns observed in S. platyphylla are influenced by environmental and habitat conditions within the native and invaded ranges. We conclude that the enemy release hypothesis best explains the results observed for sexual reproduction. In particular, we hypothesise that a release from natural enemies, specifically a pre-dispersal seed predator, may induce reproductive plasticity in S. platyphylla.
- Full Text:
- Date Issued: 2017
Biogeographical comparison of the emergent macrophyte, Sagittaria platyphylla in its native and introduced ranges
- Kwong, Raelene M, Sagliocco, Jean L, Harms, Nathan E, Butler, Kym L, Green, Peter T, Martin, Grant D
- Authors: Kwong, Raelene M , Sagliocco, Jean L , Harms, Nathan E , Butler, Kym L , Green, Peter T , Martin, Grant D
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419287 , vital:71631 , xlink:href="https://doi.org/10.1016/j.aquabot.2017.05.001"
- Description: Understanding why some plant species become invasive is important to predict and prevent future weed threats and identify appropriate management strategies. Many hypotheses have been proposed to explain why plants become invasive, yet few studies have quantitatively compared plant and population parameters between native and introduced range populations to gain an objective perspective on the causes of plant invasion. The present study uses a biogeographical field survey to compare morphological and reproductive traits and abundance between the native range (USA) and two introduced ranges (Australia and South Africa) of Sagittaria platyphylla (Engelm.) J.G. Sm (Alismataceae), a highly invasive freshwater macrophyte. Introduced and native populations differed in sexual reproductive output with the number of achenes per fruiting head and individual achene weight found to be 40% and 50% greater in introduced populations respectively. However, no other morphological traits were found to be consistently different between the native and both introduced ranges, especially after taking into account differences in environmental conditions between the three ranges. Although populations in introduced regions were larger and occupied greater percentage cover, no differences in plant density were evident. Our results suggest that, apart from sexual reproduction, many of the trait patterns observed in S. platyphylla are influenced by environmental and habitat conditions within the native and invaded ranges. We conclude that the enemy release hypothesis best explains the results observed for sexual reproduction. In particular, we hypothesise that a release from natural enemies, specifically a pre-dispersal seed predator, may induce reproductive plasticity in S. platyphylla.
- Full Text:
- Date Issued: 2017
- Authors: Kwong, Raelene M , Sagliocco, Jean L , Harms, Nathan E , Butler, Kym L , Green, Peter T , Martin, Grant D
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419287 , vital:71631 , xlink:href="https://doi.org/10.1016/j.aquabot.2017.05.001"
- Description: Understanding why some plant species become invasive is important to predict and prevent future weed threats and identify appropriate management strategies. Many hypotheses have been proposed to explain why plants become invasive, yet few studies have quantitatively compared plant and population parameters between native and introduced range populations to gain an objective perspective on the causes of plant invasion. The present study uses a biogeographical field survey to compare morphological and reproductive traits and abundance between the native range (USA) and two introduced ranges (Australia and South Africa) of Sagittaria platyphylla (Engelm.) J.G. Sm (Alismataceae), a highly invasive freshwater macrophyte. Introduced and native populations differed in sexual reproductive output with the number of achenes per fruiting head and individual achene weight found to be 40% and 50% greater in introduced populations respectively. However, no other morphological traits were found to be consistently different between the native and both introduced ranges, especially after taking into account differences in environmental conditions between the three ranges. Although populations in introduced regions were larger and occupied greater percentage cover, no differences in plant density were evident. Our results suggest that, apart from sexual reproduction, many of the trait patterns observed in S. platyphylla are influenced by environmental and habitat conditions within the native and invaded ranges. We conclude that the enemy release hypothesis best explains the results observed for sexual reproduction. In particular, we hypothesise that a release from natural enemies, specifically a pre-dispersal seed predator, may induce reproductive plasticity in S. platyphylla.
- Full Text:
- Date Issued: 2017
Genetic analysis of native and introduced populations of the aquatic weed Sagittaria platyphylla – implications for biological control in Australia and South Africa
- Kwong, Raelene M, Broadhurst, Linda M, Keener, Brian R, Coetzee, Julie A, Knerr, Nunzio, Martin, Grant D
- Authors: Kwong, Raelene M , Broadhurst, Linda M , Keener, Brian R , Coetzee, Julie A , Knerr, Nunzio , Martin, Grant D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76991 , vital:30653 , https://doi.org/10.1016/j.biocontrol.2017.06.002
- Description: Sagittaria platyphylla (Engelm.) J.G. Sm. (Alismataceae) is an emergent aquatic plant native to southern USA. Imported into Australia and South Africa as an ornamental and aquarium plant, the species is now a serious invader of shallow freshwater wetlands, slow-flowing rivers, irrigation channels, drains and along the margins of lakes and reservoirs. As a first step towards initiating a classical biological control program, a population genetic study was conducted to determine the prospects of finding compatible biological control agents and to refine the search for natural enemies to source populations with closest genetic match to Australian and South African genotypes. Using AFLP markers we surveyed genetic diversity and population genetic structure in 26 populations from the USA, 19 from Australia and 7 from South Africa. Interestingly, we have established that populations introduced into South Africa and to a lesser extent Australia have maintained substantial molecular genetic diversity comparable with that in the native range. Results from principal coordinates analysis, population graph theory and Bayesian-based clustering analysis all support the notion that introduced populations in Australia and South Africa were founded by multiple sources from the USA. Furthermore, the divergence of some Australian populations from the USA suggests that intraspecific hybridization between genetically distinct lineages from the native range may have occurred. The implications of these findings in relation to biological control are discussed.
- Full Text:
- Date Issued: 2017
- Authors: Kwong, Raelene M , Broadhurst, Linda M , Keener, Brian R , Coetzee, Julie A , Knerr, Nunzio , Martin, Grant D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76991 , vital:30653 , https://doi.org/10.1016/j.biocontrol.2017.06.002
- Description: Sagittaria platyphylla (Engelm.) J.G. Sm. (Alismataceae) is an emergent aquatic plant native to southern USA. Imported into Australia and South Africa as an ornamental and aquarium plant, the species is now a serious invader of shallow freshwater wetlands, slow-flowing rivers, irrigation channels, drains and along the margins of lakes and reservoirs. As a first step towards initiating a classical biological control program, a population genetic study was conducted to determine the prospects of finding compatible biological control agents and to refine the search for natural enemies to source populations with closest genetic match to Australian and South African genotypes. Using AFLP markers we surveyed genetic diversity and population genetic structure in 26 populations from the USA, 19 from Australia and 7 from South Africa. Interestingly, we have established that populations introduced into South Africa and to a lesser extent Australia have maintained substantial molecular genetic diversity comparable with that in the native range. Results from principal coordinates analysis, population graph theory and Bayesian-based clustering analysis all support the notion that introduced populations in Australia and South Africa were founded by multiple sources from the USA. Furthermore, the divergence of some Australian populations from the USA suggests that intraspecific hybridization between genetically distinct lineages from the native range may have occurred. The implications of these findings in relation to biological control are discussed.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »