Reaction of Perrhenate with Phthalocyanine Derivatives in the Presence of Reducing Agents and Rhenium Oxide Nanoparticles in Biomedical Applications
- Ntsimango, Songeziwe, Gandidzanwa, Sendibitiyosi, Joseph, Sinelizwi V, Hosten, Eric C, Randall, Marvin, Edkins, Adrienne L, Khene, Samson M, Mashazi, Philani N, Nyokong, Tebello, Abrahams, Abubak’r, Tshentu, Zenixole R
- Authors: Ntsimango, Songeziwe , Gandidzanwa, Sendibitiyosi , Joseph, Sinelizwi V , Hosten, Eric C , Randall, Marvin , Edkins, Adrienne L , Khene, Samson M , Mashazi, Philani N , Nyokong, Tebello , Abrahams, Abubak’r , Tshentu, Zenixole R
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300257 , vital:57910 , xlink:href="https://doi.org/10.1002/open.202200037"
- Description: A novel alternative route to access rhenium(V)−phthalocyanine complexes through direct metalation of metal-free phthalocyanines (H2Pcs) with a rhenium(VII) salt in the presence of various two-electron reducing agents is presented. Direct ion metalation of tetraamino- or tetranitrophthalocyanine with perrhenate (ReO4−) in the presence of triphenylphosphine led to oxidative decomposition of the H2Pcs, giving their respective phthalonitriles. Conversely, treatment of H2Pcs with ReO4− employing sodium metabisulfite yielded the desired ReVO−Pc complex. Finally, reaction of H2Pcs with ReO4− and NaBH4 as reducing agent led to the formation of rhenium oxide (RexOy) nanoparticles (NPs). The NP synthesis was optimised, and the RexOy NPs were capped with folic acid (FA) conjugated with tetraaminophthalocyanine (TAPc) to enhance their cancer cell targeting ability. The cytotoxicity profile of the resultant RexOy−TAPc−FA NPs was assessed and found to be greater than 80 % viability in four cell lines, namely, MDA−MB-231, HCC7, HCC1806 and HEK293T. Non-cytotoxic concentrations were determined and employed in cancer cell localization studies. The particle size effect on localization of NPs was also investigated using confocal fluorescence and transmission electron microscopy. The smaller NPs (≈10 nm) were found to exhibit stronger fluorescence properties than the ≈50 nm NPs and exhibited better cell localization ability than the ≈50 nm NPs.
- Full Text:
- Date Issued: 2022
- Authors: Ntsimango, Songeziwe , Gandidzanwa, Sendibitiyosi , Joseph, Sinelizwi V , Hosten, Eric C , Randall, Marvin , Edkins, Adrienne L , Khene, Samson M , Mashazi, Philani N , Nyokong, Tebello , Abrahams, Abubak’r , Tshentu, Zenixole R
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300257 , vital:57910 , xlink:href="https://doi.org/10.1002/open.202200037"
- Description: A novel alternative route to access rhenium(V)−phthalocyanine complexes through direct metalation of metal-free phthalocyanines (H2Pcs) with a rhenium(VII) salt in the presence of various two-electron reducing agents is presented. Direct ion metalation of tetraamino- or tetranitrophthalocyanine with perrhenate (ReO4−) in the presence of triphenylphosphine led to oxidative decomposition of the H2Pcs, giving their respective phthalonitriles. Conversely, treatment of H2Pcs with ReO4− employing sodium metabisulfite yielded the desired ReVO−Pc complex. Finally, reaction of H2Pcs with ReO4− and NaBH4 as reducing agent led to the formation of rhenium oxide (RexOy) nanoparticles (NPs). The NP synthesis was optimised, and the RexOy NPs were capped with folic acid (FA) conjugated with tetraaminophthalocyanine (TAPc) to enhance their cancer cell targeting ability. The cytotoxicity profile of the resultant RexOy−TAPc−FA NPs was assessed and found to be greater than 80 % viability in four cell lines, namely, MDA−MB-231, HCC7, HCC1806 and HEK293T. Non-cytotoxic concentrations were determined and employed in cancer cell localization studies. The particle size effect on localization of NPs was also investigated using confocal fluorescence and transmission electron microscopy. The smaller NPs (≈10 nm) were found to exhibit stronger fluorescence properties than the ≈50 nm NPs and exhibited better cell localization ability than the ≈50 nm NPs.
- Full Text:
- Date Issued: 2022
The development of catalytic oxovanadium (IV)-containing microspheres for the oxidation of various organosulfur compounds
- Ogunlaja, Adeniyi S, Khene, Samson M, Antunes, Edith M, Nyokong, Tebello, Torto, Nelson, Tshentu, Zenixole R
- Authors: Ogunlaja, Adeniyi S , Khene, Samson M , Antunes, Edith M , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241783 , vital:50969 , xlink:href="https://doi.org/10.1016/j.apcata.2013.05.004"
- Description: The development of poly[allylSB-co-EGDMA] beads containing a tetradentate ligand was achieved via suspension polymerization. The catalyst poly[allylSB-co-EGDMA]-VO was synthesized by reacting VIVOSO4 with poly[allylSB-co-EGDMA]. XPS and EPR were used to confirm the presence of vanadium (V4+) on the beads. The synthesized catalyst (poly[allylSB-co-EGDMA]-VO) was found to have a BET surface area of 22 m2 g−1 and porosity of 135 Å, with the atomic force microscopy (AFM) showing more insight on the porous nature of the beads. Oxidation of thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was carried out using tert-butyl hydroperoxide (t-BuOOH) as oxidant. An overall conversion of 60%, 82%, 98% and 87% was achieved for thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6 dimethyldibenzothiophene (4,6-DMDBT) respectively at higher (t-BuOOH) to substrate ratio and at a temperature of 40 °C. The efficient oxidation of the various organosulfur compounds presents potential for the possible application of this catalyst in oxidative desulfurization (ODS) of crude oil.
- Full Text:
- Date Issued: 2013
- Authors: Ogunlaja, Adeniyi S , Khene, Samson M , Antunes, Edith M , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241783 , vital:50969 , xlink:href="https://doi.org/10.1016/j.apcata.2013.05.004"
- Description: The development of poly[allylSB-co-EGDMA] beads containing a tetradentate ligand was achieved via suspension polymerization. The catalyst poly[allylSB-co-EGDMA]-VO was synthesized by reacting VIVOSO4 with poly[allylSB-co-EGDMA]. XPS and EPR were used to confirm the presence of vanadium (V4+) on the beads. The synthesized catalyst (poly[allylSB-co-EGDMA]-VO) was found to have a BET surface area of 22 m2 g−1 and porosity of 135 Å, with the atomic force microscopy (AFM) showing more insight on the porous nature of the beads. Oxidation of thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was carried out using tert-butyl hydroperoxide (t-BuOOH) as oxidant. An overall conversion of 60%, 82%, 98% and 87% was achieved for thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6 dimethyldibenzothiophene (4,6-DMDBT) respectively at higher (t-BuOOH) to substrate ratio and at a temperature of 40 °C. The efficient oxidation of the various organosulfur compounds presents potential for the possible application of this catalyst in oxidative desulfurization (ODS) of crude oil.
- Full Text:
- Date Issued: 2013
- «
- ‹
- 1
- ›
- »