Effects of redox mediators on the catalytic activity of iron porphyrins towards oxygen reduction in acidic media
- He, Qinggang, Wu, Gang, Liu, Ke, Khene, Samson M, Li, Qing, Mugadza, Tawanda, Deunf, Elise, Nyokong, Tebello, Chen, Shaowei W
- Authors: He, Qinggang , Wu, Gang , Liu, Ke , Khene, Samson M , Li, Qing , Mugadza, Tawanda , Deunf, Elise , Nyokong, Tebello , Chen, Shaowei W
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241472 , vital:50942 , xlink:href="https://doi.org/10.1002/celc.201402054"
- Description: The effects of different redox mediators on the oxygen reduction reaction (ORR) catalyzed by an iron porphyrin complex, iron(III) meso-tetra(N-methyl-4-pyridyl)porphine chloride [FeIIITMPyP], in 0.1 M triflic acid were investigated by cyclic voltammetry (CV) and spectroelectrochemistry in conjunction with density functional theory (DFT) calculations. The formal potentials of the FeIIITMPyP catalyst and the redox mediators, as well as the half-wave potentials for the ORR, were determined by CV in the absence and presence of oxygen in acidic solutions. UV/Vis spectroscopic and spectroelectrochemical studies confirmed that only the 2,2′-azino-bis(3-ethylbenzothiazioline-6-sulfonic acid)diammonium salt (C18H24N6O6S4) showed effective interactions with FeIIITMPyP during the ORR. DFT calculations suggested strong interaction between FeIIITMPyP and the C18H24N6O6S4 redox mediator. The redox mediator caused lengthening of the dioxygen iron bond, which thus suggested easier dioxygen reduction. Consistent results were observed in electrochemical impedance spectroscopic measurements for which the electron-transfer kinetics were also evaluated.
- Full Text:
- Date Issued: 2014
- Authors: He, Qinggang , Wu, Gang , Liu, Ke , Khene, Samson M , Li, Qing , Mugadza, Tawanda , Deunf, Elise , Nyokong, Tebello , Chen, Shaowei W
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241472 , vital:50942 , xlink:href="https://doi.org/10.1002/celc.201402054"
- Description: The effects of different redox mediators on the oxygen reduction reaction (ORR) catalyzed by an iron porphyrin complex, iron(III) meso-tetra(N-methyl-4-pyridyl)porphine chloride [FeIIITMPyP], in 0.1 M triflic acid were investigated by cyclic voltammetry (CV) and spectroelectrochemistry in conjunction with density functional theory (DFT) calculations. The formal potentials of the FeIIITMPyP catalyst and the redox mediators, as well as the half-wave potentials for the ORR, were determined by CV in the absence and presence of oxygen in acidic solutions. UV/Vis spectroscopic and spectroelectrochemical studies confirmed that only the 2,2′-azino-bis(3-ethylbenzothiazioline-6-sulfonic acid)diammonium salt (C18H24N6O6S4) showed effective interactions with FeIIITMPyP during the ORR. DFT calculations suggested strong interaction between FeIIITMPyP and the C18H24N6O6S4 redox mediator. The redox mediator caused lengthening of the dioxygen iron bond, which thus suggested easier dioxygen reduction. Consistent results were observed in electrochemical impedance spectroscopic measurements for which the electron-transfer kinetics were also evaluated.
- Full Text:
- Date Issued: 2014
Enhanced optical limiting performance in phthalocyanine-quantum dot nanocomposites by free-carrier absorption mechanism
- Sanusi, Kayode, Khene, Samson M, Nyokong, Tebello
- Authors: Sanusi, Kayode , Khene, Samson M , Nyokong, Tebello
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193904 , vital:45404 , xlink:href="https://doi.org/10.1016/j.optmat.2014.07.024"
- Description: Enhanced nonlinear optical properties (in dimethyl sulphoxide) is observed for 2(3),9(10),16(17),23(24)-tetrakis-(4-aminophenoxy)phthalocyaninato indium(III) chloride (InPc) when covalently linked to CdSe/ZnS or CdSe quantum dots (QDs). The experimental nonlinear optical parameters were obtained from Z-Scan measurements. Contributions from two-photon absorption (2PA) due to the InPc, and free-carrier absorption (FCA) by QDS have been identified as the main factors responsible for the enhanced optical limiting. The effective nonlinear absorption coefficient for InPc-CdSe/ZnS was found to be 700.0 cm/GW. The FCA cross-sections for InPc-CdSe/ZnS and InPc-CdSe composites were found to be 1.52 × 10−19 and 6.00 × 10−20 cm2 respectively. A much lower limiting threshold of 92 mJ cm−2 was observed for InPc-CdSe/ZnS nanocomposite, hence, making it suitable for use as optical limiting material. Density Functional Theory (DFT) calculations on similar phthalocyanine-quantum dots system was modeled in order to explain the enhancement in the observed nonlinear optical properties of the Pc in the presence of the QDs. The experimentally determined nonlinear optical properties are well within the range of the DFT calculated properties.
- Full Text:
- Date Issued: 2014
- Authors: Sanusi, Kayode , Khene, Samson M , Nyokong, Tebello
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193904 , vital:45404 , xlink:href="https://doi.org/10.1016/j.optmat.2014.07.024"
- Description: Enhanced nonlinear optical properties (in dimethyl sulphoxide) is observed for 2(3),9(10),16(17),23(24)-tetrakis-(4-aminophenoxy)phthalocyaninato indium(III) chloride (InPc) when covalently linked to CdSe/ZnS or CdSe quantum dots (QDs). The experimental nonlinear optical parameters were obtained from Z-Scan measurements. Contributions from two-photon absorption (2PA) due to the InPc, and free-carrier absorption (FCA) by QDS have been identified as the main factors responsible for the enhanced optical limiting. The effective nonlinear absorption coefficient for InPc-CdSe/ZnS was found to be 700.0 cm/GW. The FCA cross-sections for InPc-CdSe/ZnS and InPc-CdSe composites were found to be 1.52 × 10−19 and 6.00 × 10−20 cm2 respectively. A much lower limiting threshold of 92 mJ cm−2 was observed for InPc-CdSe/ZnS nanocomposite, hence, making it suitable for use as optical limiting material. Density Functional Theory (DFT) calculations on similar phthalocyanine-quantum dots system was modeled in order to explain the enhancement in the observed nonlinear optical properties of the Pc in the presence of the QDs. The experimentally determined nonlinear optical properties are well within the range of the DFT calculated properties.
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »