Cancer stem cells in breast cancer and metastasis:
- Lawson, Jessica C, Blatch, Gregory L, Edkins, Adrienne L
- Authors: Lawson, Jessica C , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2009
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165057 , vital:41205 , DOI: 10.1007/s10549-009-0524-9
- Description: The cancer stem cell theory poses that cancers develop from a subset of malignant cells that possess stem cell characteristics and has been proposed to account for the development of a variety of malignancies, including breast cancer. These cancer stem cells (CSC) possess characteristics of both stem cells and cancer cells, in that they have the properties of self-renewal, asymmetric cell division, resistance to apoptosis, independent growth, tumourigenicity and metastatic potential. A CSC origin for breast cancer can neatly explain both the heterogeneity of breast cancers and the relapse of the tumours after treatment. However, many reports on CSC in the breast are contradictory. There is variation with respect to how breast cancer stem cells should be identified, their characteristics and a possible lack of correlation between clinical outcome and breast cancer stem cell status of a tumour. These combined factors have made breast cancer stem cells a highly contentious issue. In this review, we highlight the progress in the analysis of cancer stem cells, with an emphasis on breast cancer.
- Full Text:
- Date Issued: 2009
- Authors: Lawson, Jessica C , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2009
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165057 , vital:41205 , DOI: 10.1007/s10549-009-0524-9
- Description: The cancer stem cell theory poses that cancers develop from a subset of malignant cells that possess stem cell characteristics and has been proposed to account for the development of a variety of malignancies, including breast cancer. These cancer stem cells (CSC) possess characteristics of both stem cells and cancer cells, in that they have the properties of self-renewal, asymmetric cell division, resistance to apoptosis, independent growth, tumourigenicity and metastatic potential. A CSC origin for breast cancer can neatly explain both the heterogeneity of breast cancers and the relapse of the tumours after treatment. However, many reports on CSC in the breast are contradictory. There is variation with respect to how breast cancer stem cells should be identified, their characteristics and a possible lack of correlation between clinical outcome and breast cancer stem cell status of a tumour. These combined factors have made breast cancer stem cells a highly contentious issue. In this review, we highlight the progress in the analysis of cancer stem cells, with an emphasis on breast cancer.
- Full Text:
- Date Issued: 2009
The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1
- Parfitt, David A, Michael, Gregory J, Vermeulen, Esmeralda G M, Prodromou, Natalia V, Webb, Tom R, Gallo, Jean-Marc, Cheetham, Michael E, Nicoll, William S, Blatch, Gregory L, Chapple, J Paul
- Authors: Parfitt, David A , Michael, Gregory J , Vermeulen, Esmeralda G M , Prodromou, Natalia V , Webb, Tom R , Gallo, Jean-Marc , Cheetham, Michael E , Nicoll, William S , Blatch, Gregory L , Chapple, J Paul
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6485 , http://hdl.handle.net/10962/d1006262 , http://hmg.oxfordjournals.org/content/18/9/1556
- Description: An extensive protein–protein interaction network has been identified between proteins implicated in inherited ataxias. The protein sacsin, which is mutated in the early-onset neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix-Saguenay, is a node in this interactome. Here, we have established the neuronal expression of sacsin and functionally characterized domains of the 4579 amino acid protein. Sacsin is most highly expressed in large neurons, particularly within brain motor systems, including cerebellar Purkinje cells. Its subcellular localization in SH-SY5Y neuroblastoma cells was predominantly cytoplasmic with a mitochondrial component. We identified a putative ubiquitin-like (UbL) domain at the N-terminus of sacsin and demonstrated an interaction with the proteasome. Furthermore, sacsin contains a predicted J-domain, the defining feature of DnaJ/Hsp40 proteins. Using a bacterial complementation assay, the sacsin J-domain was demonstrated to be functional. The presence of both UbL and J-domains in sacsin suggests that it may integrate the ubiquitin–proteasome system and Hsp70 function to a specific cellular role. The Hsp70 chaperone machinery is an important component of the cellular response towards aggregation prone mutant proteins that are associated with neurodegenerative diseases. We therefore investigated the effects of siRNA-mediated sacsin knockdown on polyglutamine-expanded ataxin-1. Importantly, SACS siRNA did not affect cell viability with GFP-ataxin-1[30Q], but enhanced the toxicity of GFP-ataxin- 1[82Q], suggesting that sacsin is protective against mutant ataxin-1. Thus, sacsin is an ataxia protein and a regulator of the Hsp70 chaperone machinery that is implicated in the processing of other ataxialinked proteins.
- Full Text:
- Date Issued: 2009
- Authors: Parfitt, David A , Michael, Gregory J , Vermeulen, Esmeralda G M , Prodromou, Natalia V , Webb, Tom R , Gallo, Jean-Marc , Cheetham, Michael E , Nicoll, William S , Blatch, Gregory L , Chapple, J Paul
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6485 , http://hdl.handle.net/10962/d1006262 , http://hmg.oxfordjournals.org/content/18/9/1556
- Description: An extensive protein–protein interaction network has been identified between proteins implicated in inherited ataxias. The protein sacsin, which is mutated in the early-onset neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix-Saguenay, is a node in this interactome. Here, we have established the neuronal expression of sacsin and functionally characterized domains of the 4579 amino acid protein. Sacsin is most highly expressed in large neurons, particularly within brain motor systems, including cerebellar Purkinje cells. Its subcellular localization in SH-SY5Y neuroblastoma cells was predominantly cytoplasmic with a mitochondrial component. We identified a putative ubiquitin-like (UbL) domain at the N-terminus of sacsin and demonstrated an interaction with the proteasome. Furthermore, sacsin contains a predicted J-domain, the defining feature of DnaJ/Hsp40 proteins. Using a bacterial complementation assay, the sacsin J-domain was demonstrated to be functional. The presence of both UbL and J-domains in sacsin suggests that it may integrate the ubiquitin–proteasome system and Hsp70 function to a specific cellular role. The Hsp70 chaperone machinery is an important component of the cellular response towards aggregation prone mutant proteins that are associated with neurodegenerative diseases. We therefore investigated the effects of siRNA-mediated sacsin knockdown on polyglutamine-expanded ataxin-1. Importantly, SACS siRNA did not affect cell viability with GFP-ataxin-1[30Q], but enhanced the toxicity of GFP-ataxin- 1[82Q], suggesting that sacsin is protective against mutant ataxin-1. Thus, sacsin is an ataxia protein and a regulator of the Hsp70 chaperone machinery that is implicated in the processing of other ataxialinked proteins.
- Full Text:
- Date Issued: 2009
The TPR2B domain of the Hsp70/Hsp90 organizing protein (Hop) may contribute towards its dimerization
- Longshaw, Victoria M, Stephens, Linda L, Daniel, Sheril, Blatch, Gregory L
- Authors: Longshaw, Victoria M , Stephens, Linda L , Daniel, Sheril , Blatch, Gregory L
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6481 , http://hdl.handle.net/10962/d1006253 , http://dx.doi.org/10.2174/092986609787848162
- Description: The role of the TPR2B domain of Hop is as yet unknown. We have shown here by site directed mutagenesis and size exclusion chromatography for the first time that the TPR1 and TPR2B domains of Hop independently dimerized, and that the dimerization of TPR2B was not dependent on its predicted two-carboxylate clamp residues. Furthermore, our data indicated that the dimerization of Hop and its domains was not disrupted in the presence of Hsp70 and Hsp90 peptides.
- Full Text:
- Date Issued: 2009
The TPR2B domain of the Hsp70/Hsp90 organizing protein (Hop) may contribute towards its dimerization
- Authors: Longshaw, Victoria M , Stephens, Linda L , Daniel, Sheril , Blatch, Gregory L
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6481 , http://hdl.handle.net/10962/d1006253 , http://dx.doi.org/10.2174/092986609787848162
- Description: The role of the TPR2B domain of Hop is as yet unknown. We have shown here by site directed mutagenesis and size exclusion chromatography for the first time that the TPR1 and TPR2B domains of Hop independently dimerized, and that the dimerization of TPR2B was not dependent on its predicted two-carboxylate clamp residues. Furthermore, our data indicated that the dimerization of Hop and its domains was not disrupted in the presence of Hsp70 and Hsp90 peptides.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »